Theta = arcsin( Aa * tan(FOV/2) / Re)
Area of Spherical Cap: Acap=2*pi*r*h
h = height of cap above plane slicing cap
h = r * ( 1 - cos (theta))
A = 2 * pi * r ^ 2 * (1 - cos(theta))
F = Acap/Asphere
F = 2 * pi * r ^ 2 * (1 - cos(theta)) / (4 * pi * r ^2)
F = (1 - cos(theta)) / 2
import math
FOV = math.pi * 90 / 180.0
Aa = 100 #km
Re = 6371 #km
theta = math.asin( Aa * math.tan(FOV/2) / Re)
print "theta = ", theta, " Radians"
F = (1.0-math.cos(theta)) / 2.0
print "Sphere Fraction covered by FOV: F = ", F
Worldwide Mass Rate Rm = 5 tons/day
Average Size of visible meteor Mm = 1.5 g / meteor
Meteor Count/day : Rc
Meteor Count/hr : Rh
Streaks in FOV per hour: Rfov = F * Rh
Norminal Observed Rates:
2-4 Streaks/hr in Evening twilight
4-8 Streaks/hr in morning twilight
Nominal Mass of visible object before entry: <1-2 grams
Nominal Entry Speed:
11 - 72 km/sec
Iron Meteors: 7-8 g/cm^3
chondrites: 3.0 to 3.7 g/cm^3
Rm = 5e3 #kg/day
Mm = 1.5e-3 #kg/meteor
Rc = Rm / Mm
Rh = Rc / 24.0
Dm = 1.5 # g/cm^3
print "Meteors/day = ", Rc
print "Meteors/hr = ", Rh
print
Rfov = F * Rh
print "Rfov = ", Rfov , " streaks/hr"
print "Average chrondrite Meteor Diamter: %3f cm" % (2.0 * math.pow((Mm*1000/Dm)*3.0/4.0/math.pi,1.0/3.0))
Me = 5.97219e24 # Earth Mass in kilograms
RE = 149.59787e6 # Radius of Earth's Orbit (kilometers)
Ty = 365.256 # Year in days
G = 6.674e−11 # Gavitational Constant (N*m^2/kg^2)
Vo = sqrt(G*M / r) # Orbital Velocity for circular orbit. M=mass of larger body, r=radius
Me = 5.97219e24 #Earth Mass in kilograms
RE = 149.59787e6 #Radius of Earth's Orbit
Ty = 365.256 #Days in Year
G = 6.674e-11 #Gavitational Constant (N*m^2/kg^2)
print "Earth Orbit Velocity", 2.0*math.pi*RE/(Ty*24*3600), " km/sec"
print "Earth weight gain rate per 1000000 years: ",1000000*Ty*Rm, " kg"