Symbolic Integration Assignment

Aaron Tresham

7/14/2021

1 Symbolic Integration Assignment

1.1 Question 0

[1 point] Watch the lecture video here.

Did you watch the video? [Type yes or no.]

1.2 Question 1

[4 points] Compute the following integrals using the integral command.

1.2.1 Part a

$$\int \sin(3x)\sin(2x)\,dx$$

1.2.2 Part b

$$\int e^{5t} \sin(4t) dt$$

1.2.3 Part c

$$\int_0^{\pi/2} \left(\sin(\mathsf{a} \mathsf{x})\right)^2 \mathsf{d} \mathsf{x}$$

1.2.4 Part d

$$\int_1^5 \frac{\ln(x)}{x^2} \, dx$$

1.3 Question 2

[1 point] Use the numerical_integral command to compute $\int_0^1 x \tan(x) \, dx$

1.4 Question 3

[1 point] The velocity at time t of a particle travelling in a straight line is given by the equation $v(t) = 3t^3 - 4t^2 + 10$. How far does the particle travel from t = 10 to t = 20? [Hint: Distance traveled is the integral of velocity.]

1.5 Question 4

[1 point] Let $f(x) = 2x\sqrt{1-x^3}$.

1.5.1 Part a

Find the area between the graph of f and the x-axis from x=0 to x=1. Convert Sage's answer to a decimal.

1.5.2 Part b

Estimate the area in Part a using left and right Riemann sums with n = 100 subintervals.

1.6 Question 5

[1 point] We are going to compute $\frac{d}{dx} \int_{x}^{\sin(x)} 3t^2 dt$ in two ways.

1.6.1 Part a

Use the derivative and integral commands to calculate $\frac{d}{dx} \int_{x}^{\sin(x)} 3t^2 dt$.

1.6.2 Part b

The Fundamental Theorem of Calculus implies that $\frac{d}{dx}\int_{g(x)}^{h(x)}f(t)\,dt=f(h(x))\cdot h'(x)-f(g(x))\cdot g'(x).$ With $f(t)=3t^2$, $h(x)=\sin(x)$, and g(x)=x, calculate $f(h(x))\cdot h'(x)-f(g(x))\cdot g'(x)$. [You should get the same answer as part a.]

1.7 Question 6

[1 point] We are going to compute $\int_5^{10} \frac{d}{dx} \frac{5}{1-x^2} dx$ in two ways.

1.7.1 Part a

Use the integral and derivative commands to calculate $\int_5^{10} \frac{d}{dx} \frac{5}{1-x^2} \, dx$.

1.7.2 Part b

The Fundamental Theorem of Calculus implies that
$$\int_a^b \frac{d}{dx} f(x) \, dx = f(b) - f(a)$$
. With $f(x) = \frac{5}{1-x^2}$, calculate $f(10) - f(5)$. [You should get the same answer as part a.]