Explain how to find the general solution to the given ODE.
\[ 48 \, e^{\left(4 \, t\right)} \sin\left(-4 \, t\right) - 16 \, {y} = -4 \, {y'} \]
Answer:
\[ {y} = k e^{\left(4 \, t\right)} - 3 \, \cos\left(-4 \, t\right) e^{\left(4 \, t\right)} \]