Explain how to find the general solution to the given ODE.
\[ 32 \, \cos\left(-4 \, t\right) e^{t} = 4 \, {y} - 4 \, {y'} \]
Answer:
\[ {y} = k e^{t} + 2 \, e^{t} \sin\left(-4 \, t\right) \]