Explain how to solve the following IVP.
\[ -27 \, {y} - 3 \, {y''} + 81 \, \mathrm{u}\left(t - 1\right) = 0 \hspace{2em} y(0)= -4 , y'(0)= 0 \]
Hint: \( \frac{1}{s^{3} + 9 \, s} = -\frac{s}{9 \, {\left(s^{2} + 9\right)}} + \frac{1}{9 \, s} \).
Answer:
\[ \mathcal{L}\{y\}= -\frac{4 \, s}{s^{2} + 9} + \frac{27 \, e^{\left(-s\right)}}{{\left(s^{2} + 9\right)} s} \]
\[ \mathcal{L}\{y\}= -\frac{3 \, s e^{\left(-s\right)}}{s^{2} + 9} - \frac{4 \, s}{s^{2} + 9} + \frac{3 \, e^{\left(-s\right)}}{s} \]
\[ {y} = -3 \, \cos\left(3 \, t - 3\right) \mathrm{u}\left(t - 1\right) - 4 \, \cos\left(3 \, t\right) + 3 \, \mathrm{u}\left(t - 1\right) \]