Determine which of the following ODEs is exact.

\[ 6 \, t y^{2} + 6 \, t = 2 \, t^{2} {y'} - 2 \, t y {y'} - 2 \, t {y'} \]

\[ -6 \, t y^{2} - 6 \, t = 6 \, t^{2} y {y'} + 2 \, t {y'} + 2 \, y \]

Then find an implicit solution for this exact ODE satisfying the initial value \(y( 1 )= -1 \).

Answer:

The following ODE is exact.

\[ -6 \, t y^{2} - 6 \, t = 6 \, t^{2} y {y'} + 2 \, t {y'} + 2 \, y \]

Its implicit solution satisfying the initial value is:

\[ -3 \, t^{2} y^{2} - 3 \, t^{2} - 2 \, t y = \left(-4\right) \]