︠3a42d238-c12f-47aa-9f7c-847cca19df24i︠ %html
A matrix is a rectangular array of values.
\[
A_{m,n} =
\begin{bmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end{bmatrix}
Note $\rightarrow$ in the computational world, indexing usually begins at $0$.
However, traditional math texts (such as ours) often begin indexing with $1$. An annoyance, maybe, but a good thing to get used to.
You'll see the use of both both types of indexing often. It's just a matter of learning to pay attention to details.
\[
A_{m,n} =
\begin{bmatrix}
a_{0,0} & a_{0,1} & \cdots & a_{0,(n-1)} \\
a_{1,0} & a_{1,1} & \cdots & a_{1,(n-1)} \\
\vdots & \vdots & \ddots & \vdots \\
a_{(m-1),0} & a_{(m-1),1} & \cdots & a_{(m-1),(n-1)}
\end{bmatrix}
$M =
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}
$
Computationally speaking, we can think of a matrix as a list of lists.
︡9645daf5-f5a0-4fa4-b6bf-8d666917d186︡{"html": "A matrix is a rectangular array of values.
\r\n\\[\r\n\r\n
A_{m,n} =
\\begin{bmatrix}
a_{1,1} & a_{1,2} & \\cdots & a_{1,n} \\\\
a_{2,1} & a_{2,2} & \\cdots & a_{2,n} \\\\
\\vdots & \\vdots & \\ddots & \\vdots \\\\
a_{m,1} & a_{m,2} & \\cdots & a_{m,n}
\\end{bmatrix}
Note $\\rightarrow$ in the computational world, indexing usually begins at $0$.
\r\nHowever, traditional math texts (such as ours) often begin indexing with $1$. An annoyance, maybe, but a good thing to get used to.
\r\nYou'll see the use of both both types of indexing often. It's just a matter of learning to pay attention to details.
\r\n\\[
A_{m,n} =
\\begin{bmatrix}
a_{0,0} & a_{0,1} & \\cdots & a_{0,(n-1)} \\\\
a_{1,0} & a_{1,1} & \\cdots & a_{1,(n-1)} \\\\
\\vdots & \\vdots & \\ddots & \\vdots \\\\
a_{(m-1),0} & a_{(m-1),1} & \\cdots & a_{(m-1),(n-1)}
\\end{bmatrix}
\r\n\r\n\r\n
$M =\r\n
\\begin{bmatrix}
a & b & c \\\\
d & e & f \\\\
g & h & i
\\end{bmatrix}
$
Computationally speaking, we can think of a matrix as a list of lists.
"}︡ ︠e7be017c-ffa5-4a4b-af15-d03c098b4f0b︠ var('a b c d e f g h i') list1 = [a, b, c] list2 = [d, e, f] list3 = [g, h, i] M = [list1, list2, list3] M ︡3df26d42-29c6-4eb1-9326-bea0e01359c5︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[\\left[a, b, c\\right], \\left[d, e, f\\right], \\left[g, h, i\\right]\\right]"}︡ ︠08bdf00d-a7a6-4b4f-9fd4-23d14658e9c8︠ for i in [0..2]: M[i] ︡daac8d7e-84b2-4dd7-aba8-e4665d1c72f6︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[a, b, c\\right]"}︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[d, e, f\\right]"}︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[g, h, i\\right]"}︡ ︠8c122a03-2666-4f25-b4ab-a1456fbee9cd︠ M[0] ︡e576788c-a4a3-4824-8704-112eb82f1fb7︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[a, b, c\\right]"}︡ ︠ed0e4b99-48c4-40c7-b35c-7508fc5b90d0︠ M[0][0] ︡fda5c294-a28a-4e60-8772-af6a19aaec23︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}a"}︡ ︠ce420f09-89ee-431a-bc04-8dc575432311︠ M[0][1] ︡1824d30f-230d-46cd-ae36-1701171fc46c︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}b"}︡ ︠3cac414e-4358-4b14-9965-c58542ce59a2︠ M[0][2] ︡8141829c-829c-436f-a47a-83eb7c7c369f︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}c"}︡ ︠8cd47efb-7e35-40b8-b355-f2944a0b1844︠ M[1] ︡2c45a61b-4374-4277-9999-291d60e920c0︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[d, e, f\\right]"}︡ ︠6f3d4066-9811-42e2-be8e-d19d8c01eb3d︠ M[1][0] ︡a4361262-ba87-4f4c-9c78-d6d6e1e3ae65︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}d"}︡ ︠e7c76c87-327a-42fb-b1c1-b02fa26fd4de︠ M[1][1] ︡14b00281-1325-4c24-9788-22bf4852a59c︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}e"}︡ ︠a97d8c86-b00a-4753-b39c-030ef23219d4︠ M[1][2] ︡ec0f29cc-3f16-4a93-a1bf-24c524426302︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}f"}︡ ︠28201286-10d7-4ecf-a822-7b6da763292a︠ M[2] ︡3921843d-0431-415a-b5b5-a579962b3a6e︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[g, h, i\\right]"}︡ ︠5ffeb733-323e-4066-b1d6-2540261e96d0︠ M[2][0] ︡80d1ca45-c305-487d-82ee-ce235895217e︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}g"}︡ ︠63283831-f625-44f1-a3e4-12843f1c12f0︠ M[2][1] ︡39e12877-250c-46b3-be5f-b24fab75c6fa︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}h"}︡ ︠add571cf-a78f-486e-b03e-ddf554d3e4dd︠ M[2][2] ︡13f4ed6f-a3dc-4d7c-bae7-3584b9afa976︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}i"}︡ ︠ea3193ef-088c-498b-ab73-f70341846c29i︠ %htmlPython supports negative indexing:
︡5930d0d4-e34d-4736-9dc8-8e38a912a7aa︡{"html": "Python supports negative indexing:
"}︡ ︠cad222c8-fbc7-47a6-8913-27f4b909633f︠ M[-1] ︡271ec3b1-2877-4271-aaec-68c3a3a2766e︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[g, h, i\\right]"}︡ ︠a37ad88e-f30d-43d2-b6dd-130e663b8832︠ M[-1][-1] ︡f014e975-ee0b-43e8-8cc5-502edef893cc︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}i"}︡ ︠84da123a-aa35-4fc1-9be2-8ceca59d7186︠ M[-2] ︡a0127c2a-bde8-49d3-937b-6097c0d51b26︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[d, e, f\\right]"}︡ ︠3d91b33f-8c50-4432-9414-38904a6fef9f︠ M[-3] ︡b44a52b3-0614-469e-aacc-61394558d88d︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[a, b, c\\right]"}︡ ︠8d6dafad-c74e-4d96-ac79-81b0324454efi︠ %htmlNegative indexing can be very useful.
This list of lists we created is structurally a matrix, but it doesn't yet know how to act like a matrix.
It's kind of a dumb matrix.
Sage provides a way to transform a dumb matrix into a smart matrix.
A smart matrix knows how to perform all kinds of useful matrix operations.
To create a smart matrix from a dumb matrix:
︡6bfe39c1-0171-4556-804e-43f548ab09ad︡{"html": "Negative indexing can be very useful.
\r\nThis list of lists we created is structurally a matrix, but it doesn't yet know how to act like a matrix.
\r\nIt's kind of a dumb matrix.
\r\nSage provides a way to transform a dumb matrix into a smart matrix.
A smart matrix knows how to perform all kinds of useful matrix operations.
To create a smart matrix from a dumb matrix:
"}︡ ︠18b4b2ec-63c1-4e24-bafc-c6ffddea80a2︠ M ︡1557b332-3972-4fa8-ae54-c78a99ab447e︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[\\left[a, b, c\\right], \\left[d, e, f\\right], \\left[g, h, i\\right]\\right]"}︡ ︠b0f81441-4f0a-4f3a-ac5f-04c62b9cd3cd︠ M = matrix(M) M ︡e7ac010e-0866-4402-b485-6319d9d6a14f︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrr}\na & b & c \\\\\nd & e & f \\\\\ng & h & i\n\\end{array}\\right)"}︡ ︠a72aa40a-ff75-489e-a76b-52c93e85fbc4i︠ %html$M$ is now a smart matrix! A matrix object will automatically display itself as a rectangular array rather than as a list of lists.
The indexing we were using works the same as before:
︡34e940ce-8660-4ebd-aeef-4ec02c1129ab︡{"html": "$M$ is now a smart matrix! A matrix object will automatically display itself as a rectangular array rather than as a list of lists.
\r\nThe indexing we were using works the same as before:
"}︡ ︠b3e76b3a-247c-4657-89a8-e06559e7ede5︠ M[0][0] ︡138368ed-7cc9-459d-b2d6-47fde84afca3︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}a"}︡ ︠e299c4a7-d4da-4fa3-ac51-32af172ebd5b︠ M[1][1] ︡388cf09f-9c01-4597-a58e-118f7e7803c4︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}e"}︡ ︠76ebc21c-013b-466f-ac74-93c5602cd441︠ M[-1][-1] ︡ff2af8a5-ee4c-4998-a4a2-400f915d0c6f︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}i"}︡ ︠360a3f93-4766-4e24-aa17-755bffa8836ei︠ %htmlHowever, with a matrix object, we also have access to another kind of indexing:
︡c4595eba-1d88-4565-84a9-e3e4504369fd︡{"html": "However, with a matrix object, we also have access to another kind of indexing:
"}︡ ︠7654168b-ca93-42e4-8184-5d634b768faa︠ M[1, 2] ︡21d4e4dc-252c-4282-9e66-46ac22414159︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}f"}︡ ︠4df384fa-6f1b-4884-a611-225aab0f3228i︠ %htmlThis kind of indexing allows us to specify submatrices:
︡1c25d5af-0b9a-4380-a7e9-960a6bb67073︡{"html": "This kind of indexing allows us to specify submatrices:
"}︡ ︠db8d789b-751b-4fb9-b956-00f54297bc63︠ M[[0,1],[1,2]] ︡63523602-0312-4549-899a-db0af7e4dbb1︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rr}\nb & c \\\\\ne & f\n\\end{array}\\right)"}︡ ︠6a55f84c-9186-4021-b9b8-bbdd31af6ec8i︠ %htmlNow that $M$ is a matrix object, we can do all sorts of useful matrixy kinds of things with it.
To find out what these things are, enter '$M.$' (the letter $M$ followed by a period) in the cell below, if it's not there already, and then press the TAB key.
A window will pop up will all kinds of functions.
Wow! (To close the window, press the escape key.)
︡0fe21fd6-92e4-4562-8adb-b853423ee0b0︡{"html": "
Now that $M$ is a matrix object, we can do all sorts of useful matrixy kinds of things with it.
\r\nTo find out what these things are, enter '$M.$' (the letter $M$ followed by a period) in the cell below, if it's not there already, and then press the TAB key.
\r\nA window will pop up will all kinds of functions.
\r\nWow! (To close the window, press the escape key.)
\r\n"}︡ ︠f8738a84-6a95-4ed5-a29f-b48230f18d67︠ M. ︡16abcd4e-53f2-405d-bdc6-d99857ca7d12︡︡ ︠8ab2612a-6a9d-4def-8829-a419af0f5a06i︠ %html
We'll be using just a few of those functions.
Here are some examples.
Evaluate the following:
︡4a818f93-c703-40fd-8525-cc1034f513fc︡{"html": "We'll be using just a few of those functions.
\r\nHere are some examples.
\r\nEvaluate the following:
"}︡ ︠4a14264c-6aa9-4eb3-be27-ddc38ef0a357︠ transpose(M) ︡aeefce03-a91e-426a-8049-d8d2eab52c48︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrr}\na & d & g \\\\\nb & e & h \\\\\nc & f & i\n\\end{array}\\right)"}︡ ︠b8e6d108-d950-4e4e-b0c9-353c1cb876ef︠ det(M) ︡c1ef18eb-e55e-42a9-8e4f-db9155362f81︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}{\\left(e i - f h\\right)} a - {\\left(b i - c h\\right)} d + {\\left(b f - c e\\right)} g"}︡ ︠e5cacc0c-f566-4106-ad1c-9cb3e45ad774︠ M.columns() ︡d2e0dda7-af5d-428e-9344-8594b066b0e1︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[\\left(a,d,g\\right), \\left(b,e,h\\right), \\left(c,f,i\\right)\\right]"}︡ ︠d935865f-a0f0-4f15-8a5d-71d758366fff︠ M.rows() ︡c944aaa8-187f-4858-b5db-03fb89cd8e23︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[\\left(a,b,c\\right), \\left(d,e,f\\right), \\left(g,h,i\\right)\\right]"}︡ ︠157b8e14-aad5-42bf-8dea-fea1627b4597︠ var('k') k*M ︡79611e32-4de1-405d-9834-98857dfa7b05︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrr}\na k & b k & c k \\\\\nd k & e k & f k \\\\\ng k & h k & i k\n\\end{array}\\right)"}︡ ︠6af295a8-77aa-4ea9-a6c1-520a5bb23407︠ A = matrix([[a, b], [c, d]]) B = matrix([[e, f], [g, h]]) ︡7a057b24-bc77-4e76-a00e-a6178525d47c︡︡ ︠7d53a928-2a49-4498-a5f5-d56da8f1d517︠ A ︡8123b70d-1327-47cf-ae90-3975cac6be20︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rr}\na & b \\\\\nc & d\n\\end{array}\\right)"}︡ ︠e8ce7383-3d48-4481-b0e1-04c7dade7d94︠ B ︡970e1467-4f3a-4d75-801a-e35b731f1a33︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rr}\ne & f \\\\\ng & h\n\\end{array}\\right)"}︡ ︠cb2e9bb4-b947-4311-aa42-d9f6ec8faaa4︠ A*B ︡5566d583-3d3e-4440-adbc-650f56fb33eb︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rr}\na e + b g & a f + b h \\\\\nc e + d g & c f + d h\n\\end{array}\\right)"}︡ ︠857feb52-2e11-4e40-8671-0563d999a1f5︠ B*A ︡2c53a293-3bf2-44ea-a863-d6a9363b0880︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rr}\na e + c f & b e + d f \\\\\na g + c h & b g + d h\n\\end{array}\\right)"}︡ ︠60ff4993-bcf0-40e1-b25b-c67acf26582a︠ A+B ︡0709833e-e473-4733-b0d6-dd91082648d8︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rr}\na + e & b + f \\\\\nc + g & d + h\n\\end{array}\\right)"}︡ ︠bab822ef-2d81-4a30-9444-fd1a57707729︠ M = matrix(10, [1..100]) M ︡53c2edb0-76c1-46cf-a3f1-4aeb1776b6fd︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrrrrrrrrr}\n1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\\\\n11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\\\\n21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\\\\n31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\\\\n41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 \\\\\n51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 \\\\\n61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 70 \\\\\n71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80 \\\\\n81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 \\\\\n91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100\n\\end{array}\\right)"}︡ ︠089051e7-1cc8-43b7-a5f0-29db727a5322︠ det(M) ︡49907b2a-bd12-4bb4-b4b1-9e1ee604e7f1︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}0"}︡ ︠44c43064-a883-4c8f-a19b-e0b9b85d1243︠ P = matrix(5, [randint(1, 100) for i in range(25)]) P ︡d996c41d-dd5e-4df7-ac42-e4a53571356d︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrrrr}\n55 & 31 & 95 & 60 & 49 \\\\\n50 & 3 & 96 & 33 & 30 \\\\\n25 & 23 & 98 & 4 & 59 \\\\\n65 & 94 & 84 & 63 & 58 \\\\\n97 & 76 & 46 & 92 & 58\n\\end{array}\\right)"}︡ ︠c718af24-1ac0-40f7-92d2-d67cc07b5bf3︠ det(P) ︡a2e6eb5d-1057-4be8-b9f7-8077037dfaeb︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}321289209"}︡ ︠1646bf14-f451-4363-b7e0-9329751ad326︠ P^-1 ︡2029b0ad-e98e-4da2-8c50-a64c9001bd4e︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrrrr}\n-\\frac{1651746}{35698801} & \\frac{1222898}{35698801} & \\frac{159624}{35698801} & -\\frac{98682}{35698801} & \\frac{699213}{35698801} \\\\\n-\\frac{1340426}{107096403} & \\frac{571331}{321289209} & -\\frac{1541492}{321289209} & \\frac{770255}{35698801} & -\\frac{2262455}{321289209} \\\\\n\\frac{113597}{35698801} & \\frac{359866}{35698801} & -\\frac{194211}{35698801} & \\frac{349522}{35698801} & -\\frac{434070}{35698801} \\\\\n\\frac{1694138}{35698801} & -\\frac{838454}{35698801} & -\\frac{536930}{35698801} & -\\frac{186019}{35698801} & -\\frac{265365}{35698801} \\\\\n\\frac{1711586}{107096403} & -\\frac{9754409}{321289209} & \\frac{8668673}{321289209} & -\\frac{826405}{35698801} & \\frac{4866380}{321289209}\n\\end{array}\\right)"}︡ ︠cb8a0632-a9ac-4fa8-a3e0-bff6a3565a57︠ P[[1..3], [2..4]] ︡55a36e7e-2893-4625-90b5-e21c1acecd36︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrr}\n96 & 33 & 30 \\\\\n98 & 4 & 59 \\\\\n84 & 63 & 58\n\\end{array}\\right)"}︡ ︠1eed4cd8-99f9-4d0b-b3b2-e0f21afbd86e︠ def minor(M, row, col): rows = range(row)+range(row+1, M.nrows()) cols = range(col)+range(col+1, M.ncols()) return M[rows, cols] ︡a4cefb2f-a004-4318-855d-1c944d28c6f2︡︡ ︠a82d7a08-9dca-4808-9f06-3b69f1dacae5︠ minor(P, 2, 3) ︡195a4227-2fe7-4138-b990-fdd5d19386ad︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrrr}\n55 & 31 & 95 & 49 \\\\\n50 & 3 & 96 & 30 \\\\\n65 & 94 & 84 & 58 \\\\\n97 & 76 & 46 & 58\n\\end{array}\\right)"}︡ ︠a77cd357-e1a0-446c-ad7d-2da1a60eac23︠ M = matrix(4, [1..16]) M ︡96b2d24f-0ffd-4b6b-9035-542e19e13d1b︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrrr}\n1 & 2 & 3 & 4 \\\\\n5 & 6 & 7 & 8 \\\\\n9 & 10 & 11 & 12 \\\\\n13 & 14 & 15 & 16\n\\end{array}\\right)"}︡ ︠0de59a8a-6361-43a3-947b-8cfc5c9ae366︠ select = [M[1, 2]] select ︡134ef5b9-3cd5-4334-9a3c-90994a9c6779︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[7\\right]"}︡ ︠54a782e3-5040-4769-9455-c744e2935f43︠ M = minor(M, 1, 2) M ︡213ac60c-91e5-4cdd-91a7-bfd5521c8b0c︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrr}\n1 & 2 & 4 \\\\\n9 & 10 & 12 \\\\\n13 & 14 & 16\n\\end{array}\\right)"}︡ ︠f785bf5d-cf9d-4807-ad0c-ecc1d71b57c4︠ select += [M[1, 1]] select ︡00529971-71c1-410e-85fc-a363243f8236︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[7, 10\\right]"}︡ ︠08f420eb-1e1c-4fbe-a9a4-b92b9df5a76d︠ M = minor(M, 1, 1) M ︡e4d243f2-efac-47f2-aafc-859f252ab15e︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rr}\n1 & 4 \\\\\n13 & 16\n\\end{array}\\right)"}︡ ︠23a9d133-3703-41c7-ac2c-86045ac7abe1︠ select += [M[1, 0]] select ︡b0f367b2-b6e3-4201-aa73-205b3eeb6111︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[7, 10, 13\\right]"}︡ ︠83b6d309-4efd-4359-9687-5f3e474a3bac︠ M = minor(M, 1, 0) M ︡5a6e1530-4602-4997-817d-c5f46fd27c4b︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{r}\n4\n\\end{array}\\right)"}︡ ︠e3291c19-281b-400d-9975-651679a0f230︠ select += [M[0, 0]] select ︡479a1aaa-a6f7-4105-8ca5-2b2e6fe616f4︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[7, 10, 13, 4\\right]"}︡ ︠f088c67f-5dea-49f4-ba48-85064fe470c9︠ sum(select) ︡4335f976-91e4-4c05-bb3d-b008e7be0f29︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}34"}︡