︠3a42d238-c12f-47aa-9f7c-847cca19df24i︠ %html

A matrix is a rectangular array of values.

\[
A_{m,n} =
\begin{bmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end{bmatrix}

Note $\rightarrow$ in the computational world, indexing usually begins at $0$. 

However, traditional math texts (such as ours) often begin indexing with $1$.  An annoyance, maybe, but a good thing to get used to.

You'll see the use of both both types of indexing often.  It's just a matter of learning to pay attention to details.

\[
A_{m,n} =
\begin{bmatrix}
a_{0,0} & a_{0,1} & \cdots & a_{0,(n-1)} \\
a_{1,0} & a_{1,1} & \cdots & a_{1,(n-1)} \\
\vdots & \vdots & \ddots & \vdots \\
a_{(m-1),0} & a_{(m-1),1} & \cdots & a_{(m-1),(n-1)}
\end{bmatrix}

 

$M = 
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}
$

Computationally speaking, we can think of a matrix as a list of lists.

︡9645daf5-f5a0-4fa4-b6bf-8d666917d186︡{"html": "

A matrix is a rectangular array of values.

\r\n
\\[
A_{m,n} =
\\begin{bmatrix}
a_{1,1} & a_{1,2} & \\cdots & a_{1,n} \\\\
a_{2,1} & a_{2,2} & \\cdots & a_{2,n} \\\\
\\vdots & \\vdots & \\ddots & \\vdots \\\\
a_{m,1} & a_{m,2} & \\cdots & a_{m,n}
\\end{bmatrix}

\r\n\r\n

Note $\\rightarrow$ in the computational world, indexing usually begins at $0$. 

\r\n

However, traditional math texts (such as ours) often begin indexing with $1$.  An annoyance, maybe, but a good thing to get used to.

\r\n

You'll see the use of both both types of indexing often.  It's just a matter of learning to pay attention to details.

\r\n
\\[
A_{m,n} =
\\begin{bmatrix}
a_{0,0} & a_{0,1} & \\cdots & a_{0,(n-1)} \\\\
a_{1,0} & a_{1,1} & \\cdots & a_{1,(n-1)} \\\\
\\vdots & \\vdots & \\ddots & \\vdots \\\\
a_{(m-1),0} & a_{(m-1),1} & \\cdots & a_{(m-1),(n-1)}
\\end{bmatrix}
\r\n

 

\r\n\r\n
$M = 
\\begin{bmatrix}
a & b & c \\\\
d & e & f \\\\
g & h & i
\\end{bmatrix}
$
\r\n

Computationally speaking, we can think of a matrix as a list of lists.

"}︡ ︠e7be017c-ffa5-4a4b-af15-d03c098b4f0b︠ var('a b c d e f g h i') list1 = [a, b, c] list2 = [d, e, f] list3 = [g, h, i] M = [list1, list2, list3] M ︡3df26d42-29c6-4eb1-9326-bea0e01359c5︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[\\left[a, b, c\\right], \\left[d, e, f\\right], \\left[g, h, i\\right]\\right]"}︡ ︠08bdf00d-a7a6-4b4f-9fd4-23d14658e9c8︠ for i in [0..2]: M[i] ︡daac8d7e-84b2-4dd7-aba8-e4665d1c72f6︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[a, b, c\\right]"}︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[d, e, f\\right]"}︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[g, h, i\\right]"}︡ ︠8c122a03-2666-4f25-b4ab-a1456fbee9cd︠ M[0] ︡e576788c-a4a3-4824-8704-112eb82f1fb7︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[a, b, c\\right]"}︡ ︠ed0e4b99-48c4-40c7-b35c-7508fc5b90d0︠ M[0][0] ︡fda5c294-a28a-4e60-8772-af6a19aaec23︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}a"}︡ ︠ce420f09-89ee-431a-bc04-8dc575432311︠ M[0][1] ︡1824d30f-230d-46cd-ae36-1701171fc46c︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}b"}︡ ︠3cac414e-4358-4b14-9965-c58542ce59a2︠ M[0][2] ︡8141829c-829c-436f-a47a-83eb7c7c369f︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}c"}︡ ︠8cd47efb-7e35-40b8-b355-f2944a0b1844︠ M[1] ︡2c45a61b-4374-4277-9999-291d60e920c0︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[d, e, f\\right]"}︡ ︠6f3d4066-9811-42e2-be8e-d19d8c01eb3d︠ M[1][0] ︡a4361262-ba87-4f4c-9c78-d6d6e1e3ae65︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}d"}︡ ︠e7c76c87-327a-42fb-b1c1-b02fa26fd4de︠ M[1][1] ︡14b00281-1325-4c24-9788-22bf4852a59c︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}e"}︡ ︠a97d8c86-b00a-4753-b39c-030ef23219d4︠ M[1][2] ︡ec0f29cc-3f16-4a93-a1bf-24c524426302︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}f"}︡ ︠28201286-10d7-4ecf-a822-7b6da763292a︠ M[2] ︡3921843d-0431-415a-b5b5-a579962b3a6e︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[g, h, i\\right]"}︡ ︠5ffeb733-323e-4066-b1d6-2540261e96d0︠ M[2][0] ︡80d1ca45-c305-487d-82ee-ce235895217e︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}g"}︡ ︠63283831-f625-44f1-a3e4-12843f1c12f0︠ M[2][1] ︡39e12877-250c-46b3-be5f-b24fab75c6fa︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}h"}︡ ︠add571cf-a78f-486e-b03e-ddf554d3e4dd︠ M[2][2] ︡13f4ed6f-a3dc-4d7c-bae7-3584b9afa976︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}i"}︡ ︠ea3193ef-088c-498b-ab73-f70341846c29i︠ %html

Python supports negative indexing:

︡5930d0d4-e34d-4736-9dc8-8e38a912a7aa︡{"html": "

Python supports negative indexing:

"}︡ ︠cad222c8-fbc7-47a6-8913-27f4b909633f︠ M[-1] ︡271ec3b1-2877-4271-aaec-68c3a3a2766e︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[g, h, i\\right]"}︡ ︠a37ad88e-f30d-43d2-b6dd-130e663b8832︠ M[-1][-1] ︡f014e975-ee0b-43e8-8cc5-502edef893cc︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}i"}︡ ︠84da123a-aa35-4fc1-9be2-8ceca59d7186︠ M[-2] ︡a0127c2a-bde8-49d3-937b-6097c0d51b26︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[d, e, f\\right]"}︡ ︠3d91b33f-8c50-4432-9414-38904a6fef9f︠ M[-3] ︡b44a52b3-0614-469e-aacc-61394558d88d︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[a, b, c\\right]"}︡ ︠8d6dafad-c74e-4d96-ac79-81b0324454efi︠ %html

Negative indexing can be very useful.

This list of lists we created is structurally a matrix, but it doesn't yet know how to act like a matrix. 

It's kind of a dumb matrix. 

Sage provides a way to transform a dumb matrix into a smart matrix.
A smart matrix knows how to perform all kinds of useful matrix operations.

To create a smart matrix from a dumb matrix:

︡6bfe39c1-0171-4556-804e-43f548ab09ad︡{"html": "

Negative indexing can be very useful.

\r\n

This list of lists we created is structurally a matrix, but it doesn't yet know how to act like a matrix. 

\r\n

It's kind of a dumb matrix. 

\r\n

Sage provides a way to transform a dumb matrix into a smart matrix.
A smart matrix knows how to perform all kinds of useful matrix operations.

\r\n

To create a smart matrix from a dumb matrix:

"}︡ ︠18b4b2ec-63c1-4e24-bafc-c6ffddea80a2︠ M ︡1557b332-3972-4fa8-ae54-c78a99ab447e︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[\\left[a, b, c\\right], \\left[d, e, f\\right], \\left[g, h, i\\right]\\right]"}︡ ︠b0f81441-4f0a-4f3a-ac5f-04c62b9cd3cd︠ M = matrix(M) M ︡e7ac010e-0866-4402-b485-6319d9d6a14f︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrr}\na & b & c \\\\\nd & e & f \\\\\ng & h & i\n\\end{array}\\right)"}︡ ︠a72aa40a-ff75-489e-a76b-52c93e85fbc4i︠ %html

$M$ is now a smart matrix!  A matrix object will automatically display itself as a rectangular array rather than as a list of lists.

The indexing we were using works the same as before:

︡34e940ce-8660-4ebd-aeef-4ec02c1129ab︡{"html": "

$M$ is now a smart matrix!  A matrix object will automatically display itself as a rectangular array rather than as a list of lists.

\r\n

The indexing we were using works the same as before:

"}︡ ︠b3e76b3a-247c-4657-89a8-e06559e7ede5︠ M[0][0] ︡138368ed-7cc9-459d-b2d6-47fde84afca3︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}a"}︡ ︠e299c4a7-d4da-4fa3-ac51-32af172ebd5b︠ M[1][1] ︡388cf09f-9c01-4597-a58e-118f7e7803c4︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}e"}︡ ︠76ebc21c-013b-466f-ac74-93c5602cd441︠ M[-1][-1] ︡ff2af8a5-ee4c-4998-a4a2-400f915d0c6f︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}i"}︡ ︠360a3f93-4766-4e24-aa17-755bffa8836ei︠ %html

However, with a matrix object, we also have access to another kind of indexing:

︡c4595eba-1d88-4565-84a9-e3e4504369fd︡{"html": "

However, with a matrix object, we also have access to another kind of indexing:

"}︡ ︠7654168b-ca93-42e4-8184-5d634b768faa︠ M[1, 2] ︡21d4e4dc-252c-4282-9e66-46ac22414159︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}f"}︡ ︠4df384fa-6f1b-4884-a611-225aab0f3228i︠ %html

This kind of indexing allows us to specify submatrices:

︡1c25d5af-0b9a-4380-a7e9-960a6bb67073︡{"html": "

This kind of indexing allows us to specify submatrices:

"}︡ ︠db8d789b-751b-4fb9-b956-00f54297bc63︠ M[[0,1],[1,2]] ︡63523602-0312-4549-899a-db0af7e4dbb1︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rr}\nb & c \\\\\ne & f\n\\end{array}\\right)"}︡ ︠6a55f84c-9186-4021-b9b8-bbdd31af6ec8i︠ %html

Now that $M$ is a matrix object, we can do all sorts of useful matrixy kinds of things with it.

To find out what these things are, enter '$M.$' (the letter $M$ followed by a period) in the cell below, if it's not there already, and then press the TAB key. 

A window will pop up will all kinds of functions.

Wow!  (To close the window, press the escape key.)

 

︡0fe21fd6-92e4-4562-8adb-b853423ee0b0︡{"html": "

Now that $M$ is a matrix object, we can do all sorts of useful matrixy kinds of things with it.

\r\n

To find out what these things are, enter '$M.$' (the letter $M$ followed by a period) in the cell below, if it's not there already, and then press the TAB key. 

\r\n

A window will pop up will all kinds of functions.

\r\n

Wow!  (To close the window, press the escape key.)

\r\n

 

"}︡ ︠f8738a84-6a95-4ed5-a29f-b48230f18d67︠ M. ︡16abcd4e-53f2-405d-bdc6-d99857ca7d12︡︡ ︠8ab2612a-6a9d-4def-8829-a419af0f5a06i︠ %html

We'll be using just a few of those functions.

Here are some examples.

Evaluate the following:

︡4a818f93-c703-40fd-8525-cc1034f513fc︡{"html": "

We'll be using just a few of those functions.

\r\n

Here are some examples.

\r\n

Evaluate the following:

"}︡ ︠4a14264c-6aa9-4eb3-be27-ddc38ef0a357︠ transpose(M) ︡aeefce03-a91e-426a-8049-d8d2eab52c48︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrr}\na & d & g \\\\\nb & e & h \\\\\nc & f & i\n\\end{array}\\right)"}︡ ︠b8e6d108-d950-4e4e-b0c9-353c1cb876ef︠ det(M) ︡c1ef18eb-e55e-42a9-8e4f-db9155362f81︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}{\\left(e i - f h\\right)} a - {\\left(b i - c h\\right)} d + {\\left(b f - c e\\right)} g"}︡ ︠e5cacc0c-f566-4106-ad1c-9cb3e45ad774︠ M.columns() ︡d2e0dda7-af5d-428e-9344-8594b066b0e1︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[\\left(a,d,g\\right), \\left(b,e,h\\right), \\left(c,f,i\\right)\\right]"}︡ ︠d935865f-a0f0-4f15-8a5d-71d758366fff︠ M.rows() ︡c944aaa8-187f-4858-b5db-03fb89cd8e23︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[\\left(a,b,c\\right), \\left(d,e,f\\right), \\left(g,h,i\\right)\\right]"}︡ ︠157b8e14-aad5-42bf-8dea-fea1627b4597︠ var('k') k*M ︡79611e32-4de1-405d-9834-98857dfa7b05︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrr}\na k & b k & c k \\\\\nd k & e k & f k \\\\\ng k & h k & i k\n\\end{array}\\right)"}︡ ︠6af295a8-77aa-4ea9-a6c1-520a5bb23407︠ A = matrix([[a, b], [c, d]]) B = matrix([[e, f], [g, h]]) ︡7a057b24-bc77-4e76-a00e-a6178525d47c︡︡ ︠7d53a928-2a49-4498-a5f5-d56da8f1d517︠ A ︡8123b70d-1327-47cf-ae90-3975cac6be20︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rr}\na & b \\\\\nc & d\n\\end{array}\\right)"}︡ ︠e8ce7383-3d48-4481-b0e1-04c7dade7d94︠ B ︡970e1467-4f3a-4d75-801a-e35b731f1a33︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rr}\ne & f \\\\\ng & h\n\\end{array}\\right)"}︡ ︠cb2e9bb4-b947-4311-aa42-d9f6ec8faaa4︠ A*B ︡5566d583-3d3e-4440-adbc-650f56fb33eb︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rr}\na e + b g & a f + b h \\\\\nc e + d g & c f + d h\n\\end{array}\\right)"}︡ ︠857feb52-2e11-4e40-8671-0563d999a1f5︠ B*A ︡2c53a293-3bf2-44ea-a863-d6a9363b0880︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rr}\na e + c f & b e + d f \\\\\na g + c h & b g + d h\n\\end{array}\\right)"}︡ ︠60ff4993-bcf0-40e1-b25b-c67acf26582a︠ A+B ︡0709833e-e473-4733-b0d6-dd91082648d8︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rr}\na + e & b + f \\\\\nc + g & d + h\n\\end{array}\\right)"}︡ ︠bab822ef-2d81-4a30-9444-fd1a57707729︠ M = matrix(10, [1..100]) M ︡53c2edb0-76c1-46cf-a3f1-4aeb1776b6fd︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrrrrrrrrr}\n1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\\\\n11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\\\\n21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\\\\n31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\\\\n41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 \\\\\n51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 \\\\\n61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 70 \\\\\n71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80 \\\\\n81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 \\\\\n91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100\n\\end{array}\\right)"}︡ ︠089051e7-1cc8-43b7-a5f0-29db727a5322︠ det(M) ︡49907b2a-bd12-4bb4-b4b1-9e1ee604e7f1︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}0"}︡ ︠44c43064-a883-4c8f-a19b-e0b9b85d1243︠ P = matrix(5, [randint(1, 100) for i in range(25)]) P ︡d996c41d-dd5e-4df7-ac42-e4a53571356d︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrrrr}\n55 & 31 & 95 & 60 & 49 \\\\\n50 & 3 & 96 & 33 & 30 \\\\\n25 & 23 & 98 & 4 & 59 \\\\\n65 & 94 & 84 & 63 & 58 \\\\\n97 & 76 & 46 & 92 & 58\n\\end{array}\\right)"}︡ ︠c718af24-1ac0-40f7-92d2-d67cc07b5bf3︠ det(P) ︡a2e6eb5d-1057-4be8-b9f7-8077037dfaeb︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}321289209"}︡ ︠1646bf14-f451-4363-b7e0-9329751ad326︠ P^-1 ︡2029b0ad-e98e-4da2-8c50-a64c9001bd4e︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrrrr}\n-\\frac{1651746}{35698801} & \\frac{1222898}{35698801} & \\frac{159624}{35698801} & -\\frac{98682}{35698801} & \\frac{699213}{35698801} \\\\\n-\\frac{1340426}{107096403} & \\frac{571331}{321289209} & -\\frac{1541492}{321289209} & \\frac{770255}{35698801} & -\\frac{2262455}{321289209} \\\\\n\\frac{113597}{35698801} & \\frac{359866}{35698801} & -\\frac{194211}{35698801} & \\frac{349522}{35698801} & -\\frac{434070}{35698801} \\\\\n\\frac{1694138}{35698801} & -\\frac{838454}{35698801} & -\\frac{536930}{35698801} & -\\frac{186019}{35698801} & -\\frac{265365}{35698801} \\\\\n\\frac{1711586}{107096403} & -\\frac{9754409}{321289209} & \\frac{8668673}{321289209} & -\\frac{826405}{35698801} & \\frac{4866380}{321289209}\n\\end{array}\\right)"}︡ ︠cb8a0632-a9ac-4fa8-a3e0-bff6a3565a57︠ P[[1..3], [2..4]] ︡55a36e7e-2893-4625-90b5-e21c1acecd36︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrr}\n96 & 33 & 30 \\\\\n98 & 4 & 59 \\\\\n84 & 63 & 58\n\\end{array}\\right)"}︡ ︠1eed4cd8-99f9-4d0b-b3b2-e0f21afbd86e︠ def minor(M, row, col): rows = range(row)+range(row+1, M.nrows()) cols = range(col)+range(col+1, M.ncols()) return M[rows, cols] ︡a4cefb2f-a004-4318-855d-1c944d28c6f2︡︡ ︠a82d7a08-9dca-4808-9f06-3b69f1dacae5︠ minor(P, 2, 3) ︡195a4227-2fe7-4138-b990-fdd5d19386ad︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrrr}\n55 & 31 & 95 & 49 \\\\\n50 & 3 & 96 & 30 \\\\\n65 & 94 & 84 & 58 \\\\\n97 & 76 & 46 & 58\n\\end{array}\\right)"}︡ ︠a77cd357-e1a0-446c-ad7d-2da1a60eac23︠ M = matrix(4, [1..16]) M ︡96b2d24f-0ffd-4b6b-9035-542e19e13d1b︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrrr}\n1 & 2 & 3 & 4 \\\\\n5 & 6 & 7 & 8 \\\\\n9 & 10 & 11 & 12 \\\\\n13 & 14 & 15 & 16\n\\end{array}\\right)"}︡ ︠0de59a8a-6361-43a3-947b-8cfc5c9ae366︠ select = [M[1, 2]] select ︡134ef5b9-3cd5-4334-9a3c-90994a9c6779︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[7\\right]"}︡ ︠54a782e3-5040-4769-9455-c744e2935f43︠ M = minor(M, 1, 2) M ︡213ac60c-91e5-4cdd-91a7-bfd5521c8b0c︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rrr}\n1 & 2 & 4 \\\\\n9 & 10 & 12 \\\\\n13 & 14 & 16\n\\end{array}\\right)"}︡ ︠f785bf5d-cf9d-4807-ad0c-ecc1d71b57c4︠ select += [M[1, 1]] select ︡00529971-71c1-410e-85fc-a363243f8236︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[7, 10\\right]"}︡ ︠08f420eb-1e1c-4fbe-a9a4-b92b9df5a76d︠ M = minor(M, 1, 1) M ︡e4d243f2-efac-47f2-aafc-859f252ab15e︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{rr}\n1 & 4 \\\\\n13 & 16\n\\end{array}\\right)"}︡ ︠23a9d133-3703-41c7-ac2c-86045ac7abe1︠ select += [M[1, 0]] select ︡b0f367b2-b6e3-4201-aa73-205b3eeb6111︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[7, 10, 13\\right]"}︡ ︠83b6d309-4efd-4359-9687-5f3e474a3bac︠ M = minor(M, 1, 0) M ︡5a6e1530-4602-4997-817d-c5f46fd27c4b︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left(\\begin{array}{r}\n4\n\\end{array}\\right)"}︡ ︠e3291c19-281b-400d-9975-651679a0f230︠ select += [M[0, 0]] select ︡479a1aaa-a6f7-4105-8ca5-2b2e6fe616f4︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}\\left[7, 10, 13, 4\\right]"}︡ ︠f088c67f-5dea-49f4-ba48-85064fe470c9︠ sum(select) ︡4335f976-91e4-4c05-bb3d-b008e7be0f29︡{"html": "\\newcommand{\\Bold}[1]{\\mathbf{#1}}34"}︡