︠a0904765-d551-4bfd-9212-dc9e4a0fafb0i︠ %html
SAGE: /b>
1. . /b> GE , . .
2.2.1. : $(5-2)(5+2)$.
︡ba64746e-e3db-4691-ae07-c2778ff65f78︡{"html": "\r\n \r\n\r\n SAGE: /b> \r\n1. A> \r\n\r\n\r\n1. . /b> GE , . . \r\n2.2.1. : $(5-2)(5+2)$."}︡
︠21148797-07bc-43be-9a2a-404ceaa75519︠
(5-2)*(5+2)
︡872f822e-d5d4-4978-a708-ea2f591ff88c︡{"stdout": "21"}︡
︠d4b024bb-883f-4029-9da1-b21580cdea88i︠
%html
2.2.2. : $\frac{5-2}{5+2}$.
︡4c280e00-8afa-420d-ab27-c0434f3f61bf︡{"html": "\r\n2.2.2. : $\\frac{5-2}{5+2}$."}︡
︠dccb0ca4-1a38-4ea6-afbd-f8126058063b︠
(5-2)/(5+2)
︡525826f7-d96e-4b4c-9d8f-22e77bafb44d︡{"stdout": "3/7"}︡
︠93cbefad-e73c-43c8-85c2-e2de8e75cf21i︠
%html
2.2.3. : $(5.1-2.1)(3.9+2.1)$.
︡b16cbebe-732c-4dc6-9972-f825f87cd497︡{"html": "\r\n2.2.3. : $(5.1-2.1)(3.9+2.1)$."}︡
︠8a032abd-b24e-4b7e-8e8c-84bf7e2dfaf7︠
(5.1-2.1)*(3.9+2.1)
︡8f517a33-702f-4b7a-bbc7-19a463e5244b︡{"stdout": "18.0000000000000"}︡
︠58ea82f0-dbdc-4a59-a50b-0f4e2d4faa68i︠
%html
2.2.4. : ${2}^{3}-17$.
︡49017cb4-af75-40dc-ae32-bdcc3ced89fd︡{"html": "\r\n2.2.4. : ${2}^{3}-17$."}︡
︠c703ba3e-d662-4347-b51b-813943e24ce1︠
2^3-17
︡37bf5878-d430-49ca-813e-5adb593117b0︡{"stdout": "-9"}︡
︠291b36b7-1027-4e6b-ba61-be0bbd14b03fi︠
%html
2.2.5. : ${3}^{4-1}+5$.
︡880635dd-b249-4aa1-b388-bec7c66d7285︡{"html": "\r\n2.2.5. : ${3}^{4-1}+5$."}︡
︠817b41d1-eb8e-41f4-a9b0-72dfd62ed3d2︠
3^(4-1)+5
︡90933567-e3b3-42b0-b64c-27b99906a7a8︡{"stdout": "32"}︡
︠756cef42-4547-489c-8958-cba8a629471di︠
%html
:
2. . \r\n\r\n2. .
2.2.10. sin, cos, tg, ctg \alpha = \frac{\pi}{4}$. .
︡385b6da5-6f8b-496a-9b1d-705d10132691︡{"html": "\r\n. SAGE , ). \r\n2.2.10. sin, cos, tg, ctg \\alpha = \\frac{\\pi}{4}$. ."}︡
︠61dc542b-c36a-4a76-85d5-a2f691bfb7d5︠
print "sin(pi/4)=", float(sin(pi/4))
print "cos(pi/4)=", float(cos(pi/4))
print "tg(pi/4)=", float(tan(pi/4))
print "ctg(pi/4)=", float(cot(pi/4))
︡dcb2a110-da85-4228-8742-79ea8d374d19︡{"stdout": "sin(pi/4)= 0.707106781187\ncos(pi/4)= 0.707106781187\ntg(pi/4)= 1.0\nctg(pi/4)= 1.0"}︡
︠b57300fb-0c50-4879-974b-3efc31898dddi︠
%html
i>i>.
4. . . "=". .
2.2.11. $d^2-14$, $d=3$.
︡834902e2-05b2-4d19-94fa-384c97f1fd5a︡{"html": "\r\n i>i>.\r\n \r\n\r\n4. . . \"=\". .\r\n \r\n2.2.11. $d^2-14$, $d=3$."}︡
︠903c4b68-0920-4900-bd78-ea0b9ce1ebd9︠
d=3
d^2-14
︡b3a488ad-e041-4163-8540-2df86de9fc51︡{"stdout": "-5"}︡
︠c7fab1bc-6e5d-42a9-b79f-cf9ddf3d49a2i︠
%html
2.2.12. $a^2-b^2$, $a=33$, $b=27$.
︡5c268b87-38c9-4564-8373-555254be67c7︡{"html": "\r\n2.2.12. $a^2-b^2$, $a=33$, $b=27$."}︡
︠2e4cc311-1be0-4f68-b86d-4968838c0616︠
a=33; b=27
a^2-b^2
︡49e4b295-7260-47d0-9359-6ed90bfe9f46︡{"stdout": "360"}︡
︠7d942b52-62a4-40f7-affd-9cd0a8951ca5i︠
%html
, i> /i>. var(),
︡a3195420-364b-4b93-9dcb-02711f820709︡{"html": "\r\n , i> /i>. var(),"}︡
︠7c63ea3d-099f-481b-b176-f25697160089︠
var('s,t')
s=2
s+t
︡c30fc762-cc73-4c4b-a51a-743c439f81f9︡{"stdout": "t + 2"}︡
︠b188e5be-2822-4ceb-9de4-a0b467d73d5di︠
%html
,
︡e20e0547-68b2-453d-bc99-59df69eba315︡{"html": "\r\n ,"}︡
︠5acc3122-d128-4d9f-9d8f-ca00e939113b︠
var('x')
sqrt(x^2+y^2)
︡92a95dba-3940-437f-80fd-acaee7a93123︡{"stderr": "Traceback (most recent call last):\n File \"
, .
+ - ;
- - ;
* -
/ - ;
^ - .
( ) , , . (
\r\n, .\r\n \r\n
\r\n2. .
\r\n3.
\r\n4. .
\r\n5.
\r\n
\r\n
\r\n + - ;
\r\n - - ;
\r\n * -
\r\n / - ;
\r\n ^ - .
\r\n ( ) , , . (
abs(x)
|x|
)
sqrt(x)
$\sqrt{x}$
factorial(n)
n!
(n!=1∙2∙3∙...∙n)
sin(x)
sin x
tr>
cos(x)
cos x
tr>
tan(x)
tg x
cot(x)
ctg x
asin(x)
arcsin x
tr>
acos(x)
arccos x
tr>
atan(x)
arctg x
acot(x)
arcctg x
\r\n\r\n
\r\n
\r\n\r\n
\r\n\r\n abs(x)\r\n |x|\r\n )\r\n \r\n sqrt(x)\r\n $\\sqrt{x}$\r\n \n \r\n factorial(n)\r\n n!\r\n (n!=1∙2∙3∙...∙n)\r\n \r\n sin(x)\r\n sin x\r\n tr>\r\n cos(x)\r\n cos x\r\n tr>\r\n tan(x)\r\n tg x\r\n \r\n \r\n cot(x)\r\n ctg x\r\n \r\n \r\n asin(x)\r\n arcsin x\r\n tr>\r\n acos(x)\r\n arccos x\r\n tr>\r\n atan(x)\r\n arctg x\r\n \r\n \r\n acot(x)\r\n arcctg x\r\n \r\n