︠a0904765-d551-4bfd-9212-dc9e4a0fafb0i︠ %html
2.2

SAGE: /b>
, .

1. A>
2. .
3.
4. .
5.

1. . /b> GE , . .

+ - ;
- - ;
* -
/ - ;
^ - .
( ) , , . (

2.2.1. : $(5-2)(5+2)$. ︡ba64746e-e3db-4691-ae07-c2778ff65f78︡{"html": "\r\n

\r\n 2.2\r\n
\r\n\r\n

\r\n\r\n SAGE: /b>
\r\n, .\r\n \r\n

\r\n1. A>
\r\n
2. .
\r\n3.
\r\n
4. .
\r\n5.
\r\n

\r\n\r\n\r\n1. . /b> GE , . .
\r\n
\r\n + - ;
\r\n - - ;
\r\n * -
\r\n / - ;
\r\n ^ - .
\r\n ( ) , , . (

\r\n2.2.1. : $(5-2)(5+2)$."}︡ ︠21148797-07bc-43be-9a2a-404ceaa75519︠ (5-2)*(5+2) ︡872f822e-d5d4-4978-a708-ea2f591ff88c︡{"stdout": "21"}︡ ︠d4b024bb-883f-4029-9da1-b21580cdea88i︠ %html 2.2.2. : $\frac{5-2}{5+2}$. ︡4c280e00-8afa-420d-ab27-c0434f3f61bf︡{"html": "\r\n2.2.2. : $\\frac{5-2}{5+2}$."}︡ ︠dccb0ca4-1a38-4ea6-afbd-f8126058063b︠ (5-2)/(5+2) ︡525826f7-d96e-4b4c-9d8f-22e77bafb44d︡{"stdout": "3/7"}︡ ︠93cbefad-e73c-43c8-85c2-e2de8e75cf21i︠ %html 2.2.3. : $(5.1-2.1)(3.9+2.1)$. ︡b16cbebe-732c-4dc6-9972-f825f87cd497︡{"html": "\r\n2.2.3. : $(5.1-2.1)(3.9+2.1)$."}︡ ︠8a032abd-b24e-4b7e-8e8c-84bf7e2dfaf7︠ (5.1-2.1)*(3.9+2.1) ︡8f517a33-702f-4b7a-bbc7-19a463e5244b︡{"stdout": "18.0000000000000"}︡ ︠58ea82f0-dbdc-4a59-a50b-0f4e2d4faa68i︠ %html 2.2.4. : ${2}^{3}-17$. ︡49017cb4-af75-40dc-ae32-bdcc3ced89fd︡{"html": "\r\n2.2.4. : ${2}^{3}-17$."}︡ ︠c703ba3e-d662-4347-b51b-813943e24ce1︠ 2^3-17 ︡37bf5878-d430-49ca-813e-5adb593117b0︡{"stdout": "-9"}︡ ︠291b36b7-1027-4e6b-ba61-be0bbd14b03fi︠ %html 2.2.5. : ${3}^{4-1}+5$. ︡880635dd-b249-4aa1-b388-bec7c66d7285︡{"html": "\r\n2.2.5. : ${3}^{4-1}+5$."}︡ ︠817b41d1-eb8e-41f4-a9b0-72dfd62ed3d2︠ 3^(4-1)+5 ︡90933567-e3b3-42b0-b64c-27b99906a7a8︡{"stdout": "32"}︡ ︠756cef42-4547-489c-8958-cba8a629471di︠ %html :

2. .

abs(x) |x| )
sqrt(x) $\sqrt{x}$
factorial(n) n! (n!=1∙2∙3∙...∙n)
sin(x) sin x tr> cos(x) cos x tr> tan(x) tg x
cot(x) ctg x
asin(x) arcsin x tr> acos(x) arccos x tr> atan(x) arctg x
acot(x) arcctg x
2.2.6. : $|-(-7)|$. ︡dbd04135-cd9e-4035-989d-bdc71e01501a︡{"html": "\r\n :
\r\n
    \r\n
  • i>Back Space;\r\n
  • i>Delete.\r\n
\r\n

\r\n\r\n2. .
\r\n

\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n
abs(x)\r\n |x|\r\n )\r\n
sqrt(x)\r\n $\\sqrt{x}$\r\n \n
factorial(n)\r\n n!\r\n (n!=1∙2∙3∙...∙n)\r\n
sin(x)\r\n sin x\r\n tr>\r\n cos(x)\r\n cos x\r\n tr>\r\n tan(x)\r\n tg x\r\n \r\n
cot(x)\r\n ctg x\r\n \r\n
asin(x)\r\n arcsin x\r\n tr>\r\n acos(x)\r\n arccos x\r\n tr>\r\n atan(x)\r\n arctg x\r\n \r\n
acot(x)\r\n arcctg x\r\n \r\n
\r\n
\r\n\r\n2.2.6. : $|-(-7)|$."}︡ ︠296d4440-46df-4f23-97ae-76b1e7cc6174︠ abs(-(-7)) ︡8e904673-8d3e-4390-be0a-67ffe241ca6b︡{"stdout": "7"}︡ ︠682cd9bc-67a4-43b4-bbad-b2ce268f8cebi︠ %html 2.2.7. : $5!$. ︡06d19fab-469d-4118-bdf2-a385fa714403︡{"html": "\r\n2.2.7. : $5!$."}︡ ︠4dd06b86-3431-45aa-b6ac-2c0594cc9abd︠ factorial(5) ︡4f7b7bee-3dc1-4122-8181-48d203d4bd08︡{"stdout": "120"}︡ ︠d1165da0-2705-4af1-98a8-5c899ee8954ci︠ %html 2.2.8. : $\sqrt{2}$. ︡3cb45042-a952-41a2-92a5-cc391a6ce9bb︡{"html": "\r\n2.2.8. : $\\sqrt{2}$."}︡ ︠e42e58aa-9971-45a3-9ee1-3f6b09ace2be︠ sqrt(2) ︡543c1f7c-8d66-4db5-8bef-24363bac43be︡{"stdout": "sqrt(2)"}︡ ︠263bb1d7-bc2d-429a-80dd-bb973b90e3b0i︠ %html \sqrt{2}$ float() RR(). ︡cc20d043-3108-4dde-b042-755966cfb85b︡{"html": "\r\n \\sqrt{2}$ float() RR()."}︡ ︠87baaba0-131a-42d8-a65a-1124ef9b1dd4︠ float(sqrt(2)) ︡4ea1c154-9c81-41c1-8af8-47c68904441e︡{"stdout": "1.4142135623730951"}︡ ︠b8ce1515-5a16-478b-8585-370965aa66fc︠ RR(sqrt(2)) ︡864adb1d-6b38-4f6a-b9e6-6cbd42a34756︡{"stdout": "1.41421356237310"}︡ ︠2499b1f9-c555-47f6-a4aa-beb23968f634i︠ %html 2.2.9. : $\sin{2}$. ︡50428754-8150-4463-9cb2-cea09f60f0da︡{"html": "\r\n2.2.9. : $\\sin{2}$."}︡ ︠5f45ddc4-60bb-4914-b46c-5b231c2c43b1︠ sin(2) ︡61cee06c-7077-458c-bb65-2859b8a1e68f︡{"stdout": "sin(2)"}︡ ︠158c34c2-7491-4a6a-972b-045dcc70750c︠ RR(sin(2)) ︡714f8942-dd22-4e93-bd70-7b8de336b24b︡{"stdout": "0.909297426825682"}︡ ︠a52a6032-8b0a-4604-ba0a-cce5692da0ebi︠ %html 3. >print. ,". ︡5317f430-f504-436e-8149-a019aac4dee5︡{"html": "\r\n\r\n3. >print. ,\"."}︡ ︠40d8b5c7-ae44-4ac6-a96f-35b31f9643f0︠ print "Answer:" ︡945ca72b-5e2d-4af6-8f95-1da51964e3e7︡{"stdout": "Answer:"}︡ ︠4047afec-db4f-4a5f-a4a6-8f28c22a0a07︠ print "cos(15)=",float(cos(15)) ︡7a302874-9fa0-42ed-b9d1-3a7fcb1155bf︡{"stdout": "cos(15)= -0.759687912859"}︡ ︠1bceb1d1-9d7a-4293-85a3-28989a39613fi︠ %html . SAGE , ).

2.2.10. sin, cos, tg, ctg \alpha = \frac{\pi}{4}$. . ︡385b6da5-6f8b-496a-9b1d-705d10132691︡{"html": "\r\n. SAGE , ).

\r\n2.2.10. sin, cos, tg, ctg \\alpha = \\frac{\\pi}{4}$. ."}︡ ︠61dc542b-c36a-4a76-85d5-a2f691bfb7d5︠ print "sin(pi/4)=", float(sin(pi/4)) print "cos(pi/4)=", float(cos(pi/4)) print "tg(pi/4)=", float(tan(pi/4)) print "ctg(pi/4)=", float(cot(pi/4)) ︡dcb2a110-da85-4228-8742-79ea8d374d19︡{"stdout": "sin(pi/4)= 0.707106781187\ncos(pi/4)= 0.707106781187\ntg(pi/4)= 1.0\nctg(pi/4)= 1.0"}︡ ︠b57300fb-0c50-4879-974b-3efc31898dddi︠ %html i>i>.

4. . . "=". .

2.2.11. $d^2-14$, $d=3$. ︡834902e2-05b2-4d19-94fa-384c97f1fd5a︡{"html": "\r\n i>i>.\r\n

\r\n\r\n4. . . \"=\". .\r\n

\r\n2.2.11. $d^2-14$, $d=3$."}︡ ︠903c4b68-0920-4900-bd78-ea0b9ce1ebd9︠ d=3 d^2-14 ︡b3a488ad-e041-4163-8540-2df86de9fc51︡{"stdout": "-5"}︡ ︠c7fab1bc-6e5d-42a9-b79f-cf9ddf3d49a2i︠ %html 2.2.12. $a^2-b^2$, $a=33$, $b=27$. ︡5c268b87-38c9-4564-8373-555254be67c7︡{"html": "\r\n2.2.12. $a^2-b^2$, $a=33$, $b=27$."}︡ ︠2e4cc311-1be0-4f68-b86d-4968838c0616︠ a=33; b=27 a^2-b^2 ︡49e4b295-7260-47d0-9359-6ed90bfe9f46︡{"stdout": "360"}︡ ︠7d942b52-62a4-40f7-affd-9cd0a8951ca5i︠ %html , i> /i>. var(), ︡a3195420-364b-4b93-9dcb-02711f820709︡{"html": "\r\n , i> /i>. var(),"}︡ ︠7c63ea3d-099f-481b-b176-f25697160089︠ var('s,t') s=2 s+t ︡c30fc762-cc73-4c4b-a51a-743c439f81f9︡{"stdout": "t + 2"}︡ ︠b188e5be-2822-4ceb-9de4-a0b467d73d5di︠ %html , ︡e20e0547-68b2-453d-bc99-59df69eba315︡{"html": "\r\n ,"}︡ ︠5acc3122-d128-4d9f-9d8f-ca00e939113b︠ var('x') sqrt(x^2+y^2) ︡92a95dba-3940-437f-80fd-acaee7a93123︡{"stderr": "Traceback (most recent call last):\n File \"\", line 1, in \n File \"/home/notebook/sage_notebook/worksheets/admin/59/code/39.py\", line 7, in \n exec compile(ur'sqrt(x**Integer(2)+y**Integer(2))' + '\\n', '', 'single')\n File \"/usr/local/sage/local/lib/python2.5/site-packages/sympy/plotting/\", line 1, in \n \nNameError: name 'y' is not defined"}︡ ︠ccca9b1a-e033-4f69-83fe-28c0832c683f︠ var('x,y'); sqrt(x^2+y^2) ︡ad4d5321-264e-4d06-8a0e-211de62b5c62︡{"stdout": "(x, y)\nsqrt(y^2 + x^2)"}︡ ︠add23e43-1d8e-4240-b98a-b2c2432a18f6i︠ %html ;".

5. i>/i>

2.2.13. $a^3-b^3$, :
1) $a=3$, $b=2$;
2) $a=2.1$, $b=1.3$. ︡e70f7ea8-d7e8-4028-9b36-9fda185755fc︡{"html": "\r\n ;\".\r\n

\r\n\r\n\r\n5. i>/i>

\r\n2.2.13. $a^3-b^3$, :
\r\n1) $a=3$, $b=2$;
\r\n2) $a=2.1$, $b=1.3$."}︡ ︠3d1cf978-fb03-4648-925f-9e136a263fb2︠ var('a,b') func(a,b)=a^3-b^3 ︡7a775254-3ce8-47a5-84a0-24d8dc92dc03︡︡ ︠5b2ce087-304b-4f92-a11b-fa848d7e3e67︠ func(3,2) ︡ffd3ee7a-88db-44f5-ab5d-58b56692f5a6︡{"stdout": "19"}︡ ︠2bee5ee9-deab-4e27-9d7e-9b867e770408︠ func(2.1,1.3) ︡15413165-18e3-4082-89aa-e26775b7265a︡{"stdout": "7.06400000000000"}︡