︠b6eac2f8-251d-47c7-946f-8baacd35dfa2i︠ %html

Càlculo con Aplicaciones

Libro de Francisco Soler

Elaborado por: Juan Sebastiàn Torres Espìndola

                                jstclarinet@hotmail.com

Ejercicio 1.7

En los ejercicios del 1 al 14 resuelva la ecuaciòn para despejar x:

 

1.  3x-7=12

︡a5507bea-bfc7-42ba-ab2f-acef9780c830︡{"html": "

Càlculo con Aplicaciones

\n

Libro de Francisco Soler

\n

Elaborado por: Juan Sebastiàn Torres Espìndola

\n

                                jstclarinet@hotmail.com

\n

Ejercicio 1.7

\n

En los ejercicios del 1 al 14 resuelva la ecuaciòn para despejar x:

\n

 

\n

1.  3x-7=12

"}︡ ︠d05b2e92-fe7b-4d23-b297-4cc0026ec597︠ var ('x') ︡7f21d3ae-1ab4-4983-9d40-3a8e7154057b︡{"stdout": "x"}︡ ︠8da90742-0ed6-41d5-abac-f0e8eedf6445︠ solve ([3*x-7==12],x) ︡7708bc5d-19fd-497a-b330-f2bb4a081602︡{"stdout": "[x == (19/3)]"}︡ ︠1dd16274-121a-4256-a49e-4db1eb1781c2i︠ %html

2.  7-9x=34

︡06252935-ea51-457c-95de-b9b66ec2242e︡{"html": "

2.  7-9x=34

"}︡ ︠2adfab2d-413d-476a-ad36-b5d183d8e7ab︠ var ('x') ︡70417b16-f69a-4c52-87c2-e8649b90542a︡{"stdout": "x"}︡ ︠cead2e47-42d1-4dfc-becb-bde5dcc073db︠ solve ([7-9*x==34],x) ︡ddbdbe0d-3a83-4a9a-8712-82a337e04edb︡{"stdout": "[x == -3]"}︡ ︠7aef360e-e25b-4dc6-b584-ee170ad82bc0i︠ %html

3.  2x-5=7x+4

︡4874ac06-76e2-4f79-905b-5fd976df14ef︡{"html": "

3.  2x-5=7x+4

"}︡ ︠876be69f-ed72-4ef6-8973-83b1ab8bb21a︠ var ('x') ︡54703dce-f771-47c3-b129-9d669e6e9bf1︡{"stdout": "x"}︡ ︠dc9ae0ea-7ae4-4f5d-815d-ca115aa5c503︠ ecuacion1=(2*x-5); ecuacion2=(7*x+4) ︡4d9d6393-b704-4b39-9aab-0a0740cc427f︡︡ ︠22017cc6-9189-4c42-89d5-e6fc8e796779︠ solve([ecuacion1==ecuacion2],x) ︡1ae90694-a6f3-4c5f-a00a-c54603710346︡{"stdout": "[x == (-9/5)]"}︡ ︠2d6c8290-0e49-4370-b208-6e257a9f4657︠ var ('x') ︡c343603e-c868-4f65-ad09-e6e4d1d49001︡{"stdout": "x"}︡ ︠788caff2-92f3-4c82-b4cd-7d2f59cb8748︠ ecuacion1=(3*x+7); ecuacion2=(7*x+19) ︡d954a333-95f2-4441-ba5d-0ae00f1f2eda︡︡ ︠1a612ea2-84c9-4134-b016-cd3024008327︠ solve([ecuacion1==ecuacion2],x) ︡df2e928a-e095-407e-a7db-cb413eb71997︡{"stdout": "[x == -3]"}︡ ︠f362672a-908b-4619-9273-5809c84ca515i︠ %html

7.  1/4*x=10-x

︡92d24afa-ba6c-49d1-969b-b84f38bdee18︡{"html": "

7.  1/4*x=10-x

"}︡ ︠edcecbc0-a258-4832-98d8-af843fdfc54a︠ var ('x') ︡ada14c30-e5ca-448c-9107-ae6b1dfff315︡{"stdout": "x"}︡ ︠d1bc9949-c319-4788-8c1b-2c39201b7871︠ ecuacion1=(1/4)*x; ecuacion2=10-x ︡5527b160-fa32-4af9-96fa-889ded14e193︡︡ ︠9b8d5ce9-f778-48dd-8292-2630be88e203︠ solve([ecuacion1==ecuacion2],x) ︡4f910acd-f216-46ec-aa81-3608bc89baa7︡{"stdout": "[x == 8]"}︡ ︠06c96394-0cbc-4f98-9ec4-57162abfa7d9i︠ %html

8.  2/3x+7/5=9/2

︡1e5c3103-a56f-44ff-911c-c4ed2c61cfa0︡{"html": "

8.  2/3x+7/5=9/2

"}︡ ︠72541acd-09c0-4da1-97ac-cd8c62acd576︠ var ('x') ︡4a117dec-fb74-454e-ad7d-505122b1b3fd︡{"stdout": "x"}︡ ︠190d7e0a-a4f8-4701-ab54-8a99eef3b987︠ ecuacion1=(2/3)*x+7/5; ecuacion2=9/2 ︡936c9ed8-2e3c-4ae2-bc7f-bdd350795618︡︡ ︠ec8a780e-0e24-4285-a14f-b0996fd4c910︠ solve([ecuacion1==ecuacion2],x) ︡f0c04c85-e753-444e-8bc9-1876e58192ea︡{"stdout": "[x == (93/20)]"}︡ ︠8cd39671-bdf0-4964-8bbe-43e866184164i︠ %html

11.  3*a*x+5*a=7*a

︡a81416b5-0f4b-46d0-b9f1-1db221a30356︡{"html": "

11.  3*a*x+5*a=7*a

"}︡ ︠d53db8bb-0707-4a83-9b99-2ac2550c906a︠ var ('a,x') ︡623b5b48-20a4-4082-9497-b2d512315163︡{"stdout": "(a, x)"}︡ ︠79360e84-f6b4-453a-884f-8a46ab9e81a2︠ ecuacion1=(3*a*x)+(5*a); ecuacion2=7*a ︡610f7d68-f196-49ef-99d3-19a350a10335︡︡ ︠92bb9871-5557-42dd-a427-c47551f56f3f︠ solve([ecuacion1==ecuacion2],x) ︡84f69799-6580-469e-89f2-06e449fc8209︡{"stdout": "[x == (2/3)]"}︡