Cubic Braid Groups

Talk on the Sage Days 94 in Saragossa

Cubic Braid Groups

Talk on the Sage Days 94 in Saragossa

following the introduction given on CoCalc

Welcome to the Cubic Braid Group page on CoCalc

This page contains a new class declaration to be used with sage. It deals with certain factor groups of the Artin braid group. This class is not integrated into the sage library, right now. You can test it here on CoCalc (if you are signed in to your own acount) or on your own computer (if you have got sage installed on it). Everyone is invited to help to improve this class. If you like to get full access to this project (as a collaborator) please contact "s.oehms@web.de".

To learn more about this new class you may follow one of the following links:

Introduction to the Cubic Braid Groups using jupyter notebook (.ipynb)

Introduction to the Cubic Braid Groups using sage worksheet (.sagews)

Download the introduction to the Cubic Braid Groups as PDF

Installation instruction:

Installation of the Cubic Braid Group class

Download

Go to the "Files"-Menue an click on the Icon on the right of "cbg.tgz" (cloud with download arrow)!

Overview

Contents

Using the CubicBraidGroup class
Introduction
Getting started
First steps
Classical realization
Exceptions in Assions series
Description of the exceptions as centralizer
Conversion maps
Preimages in the Artin braid group
Burau matrices for the cubic braid groups
Other matrix group realizations via the Burau representation
Realization as complex reflection groups
Realization as permutation groups
Other useful methods

Overview

Contents

1	Using the CubicBraidGroup class
1.1	Introduction
1.2	Getting started
1.3	First steps
1.4	Classical realization
1.5	Exceptions in Assions series
1.5.1	Description of the exceptions as centralizer
1.6	Conversion maps
1.7	Preimages in the Artin braid group
L.8	Burau matrices for the cubic braid groups
1.9	Other matrix group realizations via the Burau representation
1.10	Realization as complex reflection groups
1.11	Realization as permutation groups
	Other useful methods
July	y 3, 2018 Sebastian Oehms: Cubic Braid Groups

This module is devoted to factor groups of the Artin braid groups, such that the images s_i of the braid generators have order three:

$$s_i^3 = 1$$

In general these groups have firstly been investigated by Coxeter, H.S.M in: "Factor groups of the braid groups, Proceedings of the Fourth Candian Mathematical Congress (Vancover 1957), pp. 95-122".

This module is devoted to factor groups of the Artin braid groups, such that the images s_i of the braid generators have order three:

$$s_i^3 = 1$$

In general these groups have firstly been investigated by Coxeter, H.S.M in: "Factor groups of the braid groups, Proceedings of the Fourth Candian Mathematical Congress (Vancover 1957), pp. 95-122".

This module is devoted to factor groups of the Artin braid groups, such that the images s_i of the braid generators have order three:

$$s_i^3 = 1$$

In general these groups have firstly been investigated by Coxeter, H.S.M in: "Factor groups of the braid groups, Proceedings of the Fourth Candian Mathematical Congress (Vancover 1957), pp. 95-122".

```
sage: B3 = BraidGroup(3)
sage: braid5_2 = B3((-1, -1, -1, -2, 1, -2))
sage: braid5_2.plot()
```

```
sage: B3 = BraidGroup(3)
sage: braid5_2 = B3((-1, -1, -1, -2, 1, -2))
sage: braid5_2.plot()
```

```
sage: B3 = BraidGroup(3)
sage: braid5_2 = B3((-1, -1, -1, -2, 1, -2))
sage: braid5_2.plot()
```

```
sage: B3 = BraidGroup(3)
sage: braid5_2 = B3((-1, -1, -1, -2, 1, -2))
sage: braid5_2.plot()
```

```
sage: B3 = BraidGroup(3)
sage: braid5_2 = B3((-1, -1, -1, -2, 1, -2))
sage: braid5_2.plot()
```

```
sage: B3 = BraidGroup(3)
sage: braid5_2 = B3((-1, -1, -1, -2, 1, -2))
sage: braid5_2.plot()
```

```
sage: knot5_2 = Link(braid5_2)
```

sage: knot5_2.plot()

sage: B3 = BraidGroup(3) sage: $braid5_2 = B3(($ sage: braid5_2.plot() sage: $knot5_2 = Link(b)$ sage: knot5_2.plot()

This module is devoted to factor groups of the Artin braid groups, such that the images s_i of the braid generators have order three:

$$s_i^3 = 1$$

In general these groups have firstly been investigated by Coxeter, H.S.M in: "Factor groups of the braid groups, Proceedings of the Fourth Candian Mathematical Congress (Vancover 1957), pp. 95-122".

Exponent 2

→ symmetric group

This module is devoted to factor groups of the Artin braid groups, such that the images s_i of the braid generators have order three:

$$s_i^3 = 1$$

In general these groups have firstly been investigated by Coxeter, H.S.M in: "Factor groups of the braid groups, Proceedings of the Fourth Candian Mathematical Congress (Vancover 1957), pp. 95-122".

This module is devoted to factor groups of the Artin braid groups, such that the images s_i of the braid generators have order three:

$$s_i^3 = 1$$

In general these groups have firstly been investigated by Coxeter, H.S.M in: "Factor groups of the braid groups, Proceedings of the Fourth Candian Mathematical Congress (Vancover 1957), pp. 95-122".

The HOMFLY-PT Polynomial

The HOMFLY-PT polynomial H(L)(a,z) (see [HOMFLY] and [PT]) of a knot or link L is defined by the skein relation

$$aH\left(\times\right) - a^{-1}H\left(\times\right) = zH\left(\times\right)$$

and by the initial condition $H(\bigcirc)$ =1.

The HOMFLY-PT Polynomial

The HOMFLY-PT polynomial H(L)(a,z) (see [HOMFLY] and [PT]) of a knot or link L is defined by the skein relation

$$aH\left(\times\right) - a^{-1}H\left(\times\right) = zH\left(\times\right)$$

and by the initial condition $H(\bigcirc)$ =1.

quadratic skein relation

The HOMFLY-PT Polynomial

The HOMFLY-PT polynomial H(L)(a,z) (see [HOMFLY] and [PT]) of a knot or link L is defined by the skein relation

$$aH\left(\times\right) - a^{-1}H\left(\times\right) = zH\left(\times\right)$$

and by the initial condition $H(\bigcirc)$ =1.

The Kauffman Polynomial

The Kauffman polynomial F(K)(a,z) (see [Kauffman]) of a knot or link K is $a^{-w(K)}L(K)$ where w(L) is Computed?) and where L(K) is the regular isotopy invariant defined by the skein relations

$$L(s_{+}) = aL(s), \qquad L(s_{-}) = a^{-1}L(s)$$

(here s is a strand and s_{\pm} is the same strand with a \pm kink added) and

$$L(\times) + L(\times) = z \left(L(>) + L(\approx) \right)$$

and by the initial condition L(U)=1 where U is the unknot \bigcirc .

Sebastian Oehms: Cubic Braid Groups

The HOMFLY-PT Polynomial

The HOMFLY-PT polynomial H(L)(a,z) (see [HOMFLY] and [PT]) of a knot or link L is defined by the skein relation

$$aH\left(\times\right) - a^{-1}H\left(\times\right) = zH\left(\times\right)$$

and by the initial condition $H(\bigcirc)=1$.

The Kauffman Polynomial

cubic skein relation

The Kauffman polynomial F(K)(a,z) (see [Kauffman]) of a knot or link K is $a^{-w(K)}$ (here w(L) is Computed?) and where L(K) is the regular isotopy invariant defined by the skein relative E(K) is the regular isotopy invariant defined by the skein relative E(K) is the regular isotopy invariant defined by the skein relative E(K) is the regular isotopy invariant defined by the skein relative E(K) is the regular isotopy invariant defined by the skein relative E(K) is the regular isotopy invariant defined by the skein relative E(K) is the regular isotopy invariant defined by the skein relative E(K) is the regular isotopy invariant defined by the skein relative E(K) is the regular isotopy invariant defined by the skein relative E(K) is the regular isotopy invariant defined by the skein relative E(K) is the regular isotopy invariant defined by the skein relative E(K) is the regular isotopy invariant defined by the skein relative E(K) is the regular isotopy invariant defined by the skein relative E(K) is the regular isotopy invariant defined by the skein relative E(K) is the regular isotopy invariant defined by the skein relative E(K) is the regular isotopy invariant defined by the skein relative E(K) is the regular isotopy invariant defined by the skein relative E(K) is the regular isotopy invariant defined by the skein relative E(K) is the regular invariant defined by the skein relative E(K) is the regular invariant defined by the skein relative E(K) is the regular invariant defined by the skein relative E(K) is the regular invariant defined by the skein relative E(K) is the regular invariant defined by the skein relative E(K) is the regular invariant defined by the skein relative E(E) is the regular invariant defined by the skein relative E(E) is the regular invariant defined by the skein relative E(E) is the regular invariant defined by the skein relative E(E) is the regular invariant defined by E(E) in E(E) is the regular invariant defined by E(E

$$L(s_{+}) = aL(s),$$
 $L(s_{-}) = a^{-1}L(s)$

(here s is a strand and s_{\pm} is the same strand with a \pm kink added) and

$$L(\times) + L(\times) = z \left(L(>) + L(\approx) \right)$$

and by the initial condition L(U)=1 where U is the unknot \bigcirc .

Homfly-PT invariant

Homfly-PT invariant

Markov trace on Iwahori Hecke algebra

Homfly-PT invariant

Markov trace on Iwahori Hecke algebra deformation of group algebra of symmetric group

Homfly-PT invariant

Markov trace on lwahori Hecke algebra deformation of group algebra of symmetric group

Kauffman invariant

Homfly-PT invariant

Markov trace on lwahori Hecke algebra deformation of group algebra of symmetric group

Kauffman invariant

Markov trace on cubic Hecke algebra

Homfly-PT invariant

Markov trace on lwahori Hecke algebra deformation of group algebra of symmetric group

Kauffman invariant

Markov trace on cubic Hecke algebra

deformation of group algebra of cubic braid group

Homfly-PT invariant

Markov trace on lwahori Hecke algebra deformation of group algebra of symmetric group

Kauffman invariant

Markov trace on cubic Hecke algebra

deformation of group algebra of cubic braid group

Homfly-PT invariant

Markov trace on lwahori Hecke algebra deformation of group algebra of symmetric group

Kauffman invariant

Markov trace on cubic Hecke algebra deformation of group algebra of cubic braid group

Thus we can form the chart Homfly-PT invariant $P_K(\alpha,z)$ Homfly $F_K(lpha,z)$ Kauffman Kauffman invariant $\nabla_K(z)$ $V_K(t)$ $Q_K(z)$ Conway-Jones LMBH Alexander

From Louis Kauffman's Thus we can form the chart book: Knots and Physics page 54. Homfly-PT invariant $P_K(\alpha,z)$ Homfly $F_K(lpha,z)$ Kauffman Kauffman invariant $\nabla_K(z)$ $V_K(t)$ $Q_K(z)$ Conway-Jones LMBH Alexander

??? Markov trace on Thus we can form the chart cubic Hecke Algebra ??? Homfly-PT invariant $P_K(\alpha,z)$ Homfly $F_K(lpha,z)$ Kauffman Kauffman invariant $\nabla_K(z)$ $V_K(t)$ $Q_K(z)$ Conway-Jones LMBH

Alexander

What is known about them?

What is known about them?

Since the finite ones are irreducible complex reflection groups enumerated in the Shephard-Todd classification with ST-numbers 4, 25 and 32, a lot of results from this theory applies.

What is known about them?

Since the finite ones are irreducible complex reflection groups enumerated in the Shephard-Todd classification with ST-numbers 4, 25 and 32, a lot of results from this theory applies.

But this approach looks at each of the group as something individual.

Since the finite ones are irreducible complex reflection groups enumerated in the Shephard-Todd classification with ST-numbers 4, 25 and 32, a lot of results from this theory applies.

But this approach looks at each of the group as something individual.

Here the focus will be on the whole tower of groups!

Since the finite ones are irreducible complex reflection groups enumerated in the Shephard-Todd classification with ST-numbers 4, 25 and 32, a lot of results from this theory applies.

But this approach looks at each of the group as something individual.

Here the focus will be on the whole tower of groups!

In "Einige endliche Faktorgruppen der Zopfgruppen" (Math. Z., 163 (1978), 291-302) J. Assion considered two series S(m) and U(m) of finite dimensional factors of these groups. The additional relations on the braid group generators $\{s_1, \dots, s_{m-1}\}$ are

$$s_3 s_1 t_2 s_1 t_2^{-1} t_3 t_2 s_1 t_2^{-1} t_3^{-1} = 1$$
 for $m >= 5$ in case of $S(m)$ $t_1 t_3 = 1$ for $m >= 5$ in case of $U(m)$

where $t_i = (s_i s_{i+1})^3$. He showed that each series of finite cubic braid group factors must be an epimorhic image of one of his two series, as long as the groups with less than 5 strands are the full cubic braid groups, whereas the group on 5 strands is not. He realized the groups S(m) as symplectic groups over GF(3) (resp. subgroups therein) and U(m) as general unitary groups over GF(4) (resp. subgroups therein).

In "Einige endliche Faktorgruppen der Zopfgruppen" (Math. Z., 163 (1978), 291-302) J. Assion considered two series S(m) and U(m) of finite dimensional factors of these groups. The additional relations on the braid group generators $\{s_1, \dots, s_{m-1}\}$ are

$$s_3 s_1 t_2 s_1 t_2^{-1} t_3 t_2 s_1 t_2^{-1} t_3^{-1} = 1$$
 for $m >= 5$ in case of $S(m)$ $t_1 t_3 = 1$ for $m >= 5$ in case of $U(m)$

where $t_i = (s_i s_{i+1})^3$. He showed that each series of finite cubic braid group factors must be an epimorhic image of one of his two series, as long as the groups with less than 5 strands are the full cubic braid groups, whereas the group on 5 strands is not. He realized the groups S(m) as symplectic groups over GF(3) (resp. subgroups therein) and U(m) as general unitary groups over GF(4) (resp. subgroups therein).

In "Einige endliche Faktorgruppen der Zopfgruppen" (Math. Z., 163 (1978), 291-302) J. Assion considered two series S(m) and U(m) of finite dimensional factors of these groups. The additional relations on the braid group generators $\{s_1, \dots, s_{m-1}\}$ are

$$s_3 s_1 t_2 s_1 t_2^{-1} t_3 t_2 s_1 t_2^{-1} t_3^{-1} = 1$$
 for $m >= 5$ in case of $S(m)$
 $t_1 t_3 = 1$ for $m >= 5$ in case of $U(m)$

where $t_i = (s_i s_{i+1})^3$. He showed that each series of finite cubic braid group factors must be an epimorhic image of one of his two series, as long as the groups with less than 5 strands are the full cubic braid groups, whereas the group on 5 strands is not. He realized the groups S(m) as symplectic groups over S(m) as symplectic groups over S(m) (resp. subgroups therein) and S(m) as general unitary groups over S(m) (resp. subgroups therein).

In "Einige endliche Faktorgruppen der Zopfgruppen" (Math. Z., 163 (1978), 291-302) J. Assion considered two series S(m) and U(m) of finite dimensional factors of these groups. The additional relations on the braid group generators $\{s_1, \dots, s_{m-1}\}$ are

$$s_3 s_1 t_2 s_1 t_2^{-1} t_3 t_2 s_1 t_2^{-1} t_3^{-1} = 1$$
 for $m >= 5$ in case of $\frac{S(m)}{U(m)}$ in case of $\frac{S(m)}{U(m)}$

where $t_i = (s_i s_{i+1})^3$. He showed that each series of finite cubic braid group factors must be an epimorhic image of one of his two series, as long as the groups with less than 5 strands are the full cubic braid groups, whereas the group on 5 strands is not. He realized the groups S(m) as symplectic groups over S(m) (resp. subgroups therein) and S(m) as general unitary groups over S(m) (resp. subgroups therein).

- as classical group
- as_matrix_group
- as_reflection_group (needs sage version 7.2 up and gap3 + CHEVIE)
- as_permutation_group

- as_classical_group
- as_matrix_group
- as_reflection_group (needs sage version 7.2 up and gap3 + CHEVIE)
- as_permutation_group

Overview

Contents

1	Using the CubicBraidGroup class
1.1	Introduction
1.2	Getting started
1.3	First steps
1.4	Classical realization
1.5	
1.5.1	Description of the exceptions as centralizer
1.6	Conversion maps
1.7	Preimages in the Artin braid group
1.8	Burau matrices for the cubic braid groups
1.9	Other matrix group realizations via the Burau representation
1.10	Realization as complex reflection groups
1.11	Realization as permutation groups
1.12	Other useful methods

```
sage: from cubic_braid import *
 sage: C3 = CubicBraidGroup (3); C3
 Cubic Braid group on 3 strands
 sage: C3Cl = C3.as_classical_group(); C3Cl
 Subgroup of Unitary Group of degree 2 over Universal
 Cyclotomic Field with respect to hermitian form
  [-E(12) \land 7 + E(12) \land 11]
                   -1 - E(12) ^7 + E(12) ^11 generated by:
  ([ E(3) E(12)^{11}
  [ 0 1],[ 1
                                      01
  [E(12) \land 11 	 E(3)])
 braid5 2inC3 = C3(braid5 2)
 sage: braid5_2inC3Cl = C3Cl(braid5_2inC3); braid5_2inC3Cl
 [-E(3)^2 E(12)^7]
  [ 0 -1]
 sage: braid5_2inC3back = C3(braid5_2inC3C1); braid5_2inC3back
 c0*c1*c0^2*c1
 sage: braid5 2inC3 == braid5 2inC3back
 True
 sage: braid5 2inC3.braid() == braid5 2inC3back.braid()
Ju False
```

```
sage: from cubic braid import *
 sage: C3 = CubicBraidGroup(3); C3
 Cubic Braid group on 3 strands
 sage: C3Cl = C3.as_classical_group(); C3Cl
 Subgroup of Unitary Group of degree 2 over Universal
 Cyclotomic Field with respect to hermitian form
  [-E(12) \land 7 + E(12) \land 11]
                   -1 - E(12) ^7 + E(12) ^11 generated by:
  ([ E(3) E(12) ^11]
  [ 0 1],[ 1
                                       01
  [E(12) \land 11 	 E(3)])
 braid5 2inC3 = C3(braid5 2)
 sage: braid5_2inC3Cl = C3Cl(braid5_2inC3); braid5_2inC3Cl
 [-E(3)^2 E(12)^7]
  [ 0 -1]
 sage: braid5_2inC3back = C3(braid5_2inC3C1); braid5_2inC3back
 c0*c1*c0^2*c1
 sage: braid5_2inC3 == braid5_2inC3back
 True
 sage: braid5 2inC3.braid() == braid5 2inC3back.braid()
Ju False
```

```
sage: from cubic_braid import *
 sage: C3 = CubicBraidGroup (3); C3
 Cubic Braid group on 3 strands
 sage: C3Cl = C3.as_classical_group(); C3Cl
 Subgroup of Unitary Group of degree 2 over Universal
 Cyclotomic Field with respect to hermitian form
  [-E(12) \land 7 + E(12) \land 11]
                   -1 - E(12) ^7 + E(12) ^11 generated by:
  ([ E(3) E(12)^{11}
  [ 0 1], [ 1
                                      01
  [E(12) \land 11 	 E(3)])
 braid5 2inC3 = C3(braid5 2)
 sage: braid5_2inC3Cl = C3Cl(braid5_2inC3); braid5_2inC3Cl
 [-E(3)^2 E(12)^7]
  [ 0 -1]
 sage: braid5_2inC3back = C3(braid5_2inC3C1); braid5_2inC3back
 c0*c1*c0^2*c1
 sage: braid5 2inC3 == braid5 2inC3back
 True
 sage: braid5 2inC3.braid() == braid5 2inC3back.braid()
Ju False
```

```
sage: from cubic_braid import *
 sage: C3 = CubicBraidGroup (3); C3
 Cubic Braid group on 3 strands
 sage: C3Cl = C3.as_classical_group(); C3Cl
 Subgroup of Unitary Group of degree 2 over Universal
 Cyclotomic Field with respect to hermitian form
 [-E(12) \land 7 + E(12) \land 11]
                  -1 - E(12) \wedge 7 + E(12) \wedge 11] generated by:
     E(3) E(12) ^11]
    0 1], [ 1
  [E(12) \land 11 	 E(3)])
 braid5 2inC3 = C3(braid5 2)
 sage: braid5_2inC3Cl = C3Cl(braid5_2inC3); braid5_2inC3Cl
 [-E(3)^2 E(12)^7]
  0 -11
 sage: braid5_2inC3back = C3(braid5_2inC3C1); braid5_2inC3back
 c0*c1*c0^2*c1
 sage: braid5 2inC3 == braid5 2inC3back
 True
 sage: braid5 2inC3.braid() == braid5 2inC3back.braid()
Ju False
```

```
sage: from cubic_braid import *
 sage: C3 = CubicBraidGroup (3); C3
 Cubic Braid group on 3 strands
 sage: C3Cl = C3.as_classical_group(); C3Cl
 Subgroup of Unitary Group of degree 2 over Universal
 Cyclotomic Field with respect to hermitian form
  [-E(12) \land 7 + E(12) \land 11]
                  -1 - E(12) \wedge 7 + E(12) \wedge 11] generated by:
     E(3) E(12) ^11]
    0 1], [ 1
  [E(12) \land 11 \qquad E(3)])
 braid5 2inC3 = C3(braid5 2)
 sage: braid5_2inC3Cl = C3Cl(braid5_2inC3); braid5_2inC3Cl
 [-E(3)^2 E(12)^7]
  0 -11
 sage: braid5_2inC3back = C3(braid5_2inC3C1); braid5_2inC3back
 c0*c1*c0^2*c1
 sage: braid5 2inC3 == braid5 2inC3back
 True
 sage: braid5 2inC3.braid() == braid5 2inC3back.braid()
Ju False
```

```
sage: from cubic_braid import *
 sage: C3 = CubicBraidGroup (3); C3
 Cubic Braid group on 3 strands
 sage: C3Cl = C3.as_classical_group(); C3Cl
 Subgroup of Unitary Group of degree 2 over Universal
 Cyclotomic Field with respect to hermitian form
  [-E(12) \land 7 + E(12) \land 11]
                   -1 - E(12) \wedge 7 + E(12) \wedge 11 generated by:
     E(3) E(12) ^11]
    0 1], [ 1
  [E(12) \land 11 \qquad E(3)])
 braid5 2inC3 = C3(braid5 2)
 sage: braid5_2inC3Cl = C3Cl(braid5_2inC3); braid5_2inC3Cl
  [-E(3) \land 2 E(12) \land 7]
 sage: braid5_2inC3back = C3(braid5_2inC3C1); braid5_2inC3back
 c0*c1*c0^2*c1
 sage: braid5 2inC3 == braid5 2inC3back
 True
 sage: braid5 2inC3.braid() == braid5 2inC3back.braid()
Ju False
```

```
sage: from cubic_braid import *
 sage: C3 = CubicBraidGroup (3); C3
 Cubic Braid group on 3 strands
 sage: C3Cl = C3.as_classical_group(); C3Cl
 Subgroup of Unitary Group of degree 2 over Universal
 Cyclotomic Field with respect to hermitian form
  [-E(12) \land 7 + E(12) \land 11]
                    -1 - E(12) \land 7 + E(12) \land 11] generated by:
      E(3) E(12) \land 11
            1], [ 1
  [E(12) \land 11 \qquad E(3)])
 braid5 2inC3 = C3(braid5 2)
 sage: braid5_2inC3Cl = C3Cl(braid5_2inC3); braid5_2inC3Cl
  [-E(3)^2 E(12)^7]
 sage: braid5_2inC3back = C3 (braid5_2inconverting braid5_2k
                                            to the classical
 c0*c1*c0^2*c1
 sage: braid5_2inC3 == braid5_2inC3back
                                               realization
 True
 sage: braid5 2inC3.braid() == braid5 2inC3back.braid()
Ju False
```

```
sage: from cubic_braid import *
 sage: C3 = CubicBraidGroup (3); C3
 Cubic Braid group on 3 strands
 sage: C3C1 = C3.as_classical_group(); C3C1
 Subgroup of Unitary Group of degree 2 over Universal
 Cyclotomic Field with respect to hermitian form
  [-E(12) \land 7 + E(12) \land 11]
                  -1 - E(12) \wedge 7 + E(12) \wedge 11 generated by:
     E(3) E(12) ^11]
     0 11, [ 1
  [E(12) \land 11 	 E(3)])
 braid5 2inC3 = C3(braid5 2)
 sage: braid5_2inC3Cl = C3Cl(braid5_2inC3); braid5_2inC3Cl
  [-E(3) \land 2 E(12) \land 7]
  0 -11
 sage: braid5_2inC3back = C3(braid5_2inC3C1); braid5_2inC3back
 c0*c1*c0^2*c1
 sage: braid5 2inC3 == braid5 2inC3back
 sage: braid5_2inC3.braid() == braid5_2inC3back.brayd
 True
Ju False
```

```
braid5_2inC3 = C3(braid5_2)
sage: braid5 2inC3Cl = C3Cl(braid5 2inC3); braid5 2inC3Cl
[-E(3)^2 E(12)^7]
sage: braid5_2inC3back = C3(braid5_2inC3C1); braid5_2inC3back
c0*c1*c0^2*c1
sage: braid5 2inC3 == braid5 2inC3back
True
sage: braid5_2inC3.braid() == braid5_2inConverting_back
False
sage: braid5 2inC3back.braid().plot()
Launched png viewer for Graphics object consisting of 20
graphics primitives
sage: Link(braid5_2inC3back.braid()).plot()
Launched png viewer for Graphics object consisting of 24
graphics primitives
```

```
braid5 2inC3 = C3(braid5 2)
sage: braid5 2inC3Cl = C3Cl(braid5 2inC3); braid5 2inC3Cl
[-E(3)^2 E(12)^7]
sage: braid5_2inC3back = C3(braid5_2inC3C1); braid5_2inC3back
c0*c1*c0^2*c1
sage: braid5 2inC3 == braid5 2inC3back
True
sage: braid5 2inC3.braid() == braid5 2inC3back.braid()
False
sage: braid5 2inC3back.braid().plot()
Launched png viewer for Graphics object consisting of 20
graphics primitives
sage: Link(braid5_2inC3back.braid()).plot()
Launched png viewer for Graphics object consisting of 24
graphics primitives
```

```
braid5_2inC3 = C3(braid5_2)
sage: braid5 2inC3Cl = C3Cl(braid5 2inC3); braid5 2inC3Cl
[-E(3)^2 E(12)^7]
sage: braid5_2inC3back = C3(braid5_2inC3C1); braid5_2inC3back
c0*c1*c0^2*c1
sage: braid5 2inC3 == braid5 2inC3back
True
sage: braid5 2inC3.braid() == braid5 2inC3back.braid()
False
sage: braid5_2inC3back.braid().plot()
Launched png viewer for Graphics object consisting of 20
graphics primitives
sage: Link(braid5_2inC3back.braid()).plot()
Launched png viewer for Graphics object consisting of 24
graphics primitives
                          pre-image in the braid group
```

```
braid5_2inC3 = C3(braid5_2)
sage: braid5 2inC3Cl = C3Cl(braid5 2inC3); braid5 2inC3Cl
[-E(3)^2 E(12)^7]
sage: braid5_2inC3back = C3(braid5_2inC3C1); braid5_2inC3back
c0*c1*c0^2*c1
sage: braid5 2inC3 == braid5 2inC3back
True
sage: braid5_2inC3.braid() == braid5_2inC3back.braid()
False
sage: braid5_2inC3back.braid().plot()
Launched png viewer for Graphics object consisting of 20
graphics primitives
sage: Link(braid5_2inC3back.braid()).plot()
Launched png viewer for Graphics object consisting
graphics primitives
```

```
braid5_2inC3 = C3(braid5_2)
sage: braid5 2inC3Cl = C3Cl(braid5 2inC3); braid5 2inC3Cl
[-E(3)^2 E(12)^7]
sage: braid5_2inC3back = C3(braid5_2inC3C1); braid5_2inC3back
c0*c1*c0^2*c1
sage: braid5 2inC3 == braid5 2inC3back
True
sage: braid5 2inC3.braid() == braid5 2inC3back braid()
False
sage: braid5 2inC3back.braid().plot()
Launched png viewer for Graphics object consisting of 20
graphics primitives
sage: Link(braid5_2inC3back.braid //) .plot()
Launched png viewer for Graphics object consisting of 24
graphics primitives
```

July 3, 2018

Sebastian Oehms: Cubic Braid Groups

Examples of Assion Groups

```
sage: S3 = AssionGroupS(3); S3
   Assion group on 3 strands of type S
    sage: U3 = AssionGroupU(3); U3
   Assion group on 3 strands of type U
    sage: C3.is_isomorphic(S3)
   True
    sage: C3.is_isomorphic(U3)
   True
   sage: C3 == S3
   False
   sage: C3 == U3
   False
   sage: S3 == U3
   False
July 3, 2010
```

65

Examples of Assion Groups

```
sage: S3 = AssionGroupS(3); S3
   Assion group on 3 strands of type S
    sage: U3 = AssionGroupU(3); U3
   Assion group on 3 strands of type U
    sage: C3.is_isomorphic(S3)
   True
    sage: C3.is_isomorphic(U3)
   True
   sage: C3 == S3
   False
   sage: C3 == U3
   False
   sage: S3 == U3
   False
July 3, 2010
```

66

Examples of Assion Groups

```
sage: S3 = AssionGroupS(3); S3
   Assion group on 3 strands of type S
    sage: U3 = AssionGroupU(3); U3
   Assion group on 3 strands of type U
    sage: C3.is_isomorphic(S3)
   True
    sage: C3.is_isomorphic(U3)
   True
   sage: C3 == S3
   False
   sage: C3 == U3
   False
   sage: S3 == U3
   False
July 3, 2010
```

67

```
sage: S5.order()
51840
sage: U5.order()
77760
sage: C5.order()
155520
sage: S5Cl = S5.as_classical_group(); S5Cl
Symplectic Group of degree 4 over Finite Field
of size 3
sage:
sage: U5Cl = U5.as_classical_group(); U5Cl
General Unitary Group of degree 4 over Finite
Field in a of size 2^2
```

```
sage: S5.order()
51840
sage: U5.order()
77760
sage: C5.order()
155520
sage: S5Cl = S5.as_classical_group(); S5Cl
Symplectic Group of degree 4 over Finite Field
of size 3
sage:
sage: U5Cl = U5.as_classical_group(); U5Cl
General Unitary Group of degree 4 over Finite
Field in a of size 2^2
```

```
sage: S5.order()
51840
sage: U5.order()
77760
sage: C5.order()
155520
sage: S5Cl = S5.as_classical_group(); S5Cl
Symplectic Group of degree 4 over Finite Field
of size 3
sage:
sage: U5Cl = U5.as_classical_group(); U5Cl
General Unitary Group of degree 4 over Finite
Field in a of size 2^2
```

```
sage: S5.order()
51840
sage: U5.order()
77760
sage: C5.order()
155520
sage: S5Cl = S5.as_classical_group(); S5Cl
Symplectic Group of degree 4 over Finite Field
of size 3
sage:
sage: U5Cl = U5.as_classical_group(); U5Cl
General Unitary Group of degree 4 over Finite
Field in a of size 2^2
```

Overview

Contents

1	Using the CubicBraidGroup class
1.1	Introduction
1.2	Getting started
1.3	First steps
1.4	Classical realization
1.5	Exceptions in Assions series
1.5.1	Description of the exceptions as centralizer
1.6	Conversion maps
1.7	Preimages in the Artin braid group
1.8	Burau matrices for the cubic braid groups
1.9	Other matrix group realizations via the Burau representation
1.10	Realization as complex reflection groups
1.11	Realization as permutation groups
1.12	Other useful methods

```
sage: U3Cl = U3.as_classical_group(); U3Cl
Subgroup of (The projective general unitary
group of degree 3 over Finite Field of size 2)
generated by [(1,7,6)(3,19,14)(4,15,10)(5,11,18)
(12,16,20), (1,12,13)(2,15,19)(4,9,14)(5,18,8)
(6,21,16)
sage: U3Clemb =
U3.as_classical_group(embedded=True); U3Clemb
Matrix group over Finite Field in a of size 2^2
with 2 generators (
[0 \ 0 \ a] \ [a + 1 \ a \ a]
[0 1 0] [ a a + 1
[a 0 a], [ a a a + 1]
```

```
sage: U3Cl = U3.as_classical_group(); U3Cl
Subgroup of (The projective general unitary
group of degree 3 over Finite Field of size 2)
generated by [(1,7,6)(3,19,14)(4,15,10)(5,11,18)
(12,16,20), (1,12,13)(2,15,19)(4,9,14)(5,18,8)
(6,21,16)
sage: U3Clemb =
U3.as_classical_group(embedded=True); U3Clemb
Matrix group over Finite Field in a of size 2^2
with 2 generators (
[0 \ 0 \ a] \ [a + 1 \ a \ a]
[0 1 0] [ a a + 1
[a 0 a], [ a a a + 1]
```

```
sage: U3Cl = U3.as_classical_group(); U3Cl
Subgroup of (The projective general unitary
group of degree 3 over Finite Field of size 2)
generated by [(1,7,6)(3,19,14)(4,15,10)(5,11,18)
(12,16,20), (1,12,13)(2,15,19)(4,9,14)(5,18,8)
(6,21,16)
sage: U3Clemb =
U3.as_classical_group(embedded=True); U3Clemb
Matrix group over Finite Field in a of size 2^2
with 2 generators (
[0 \ 0 \ a] \ [a + 1 \ a \ a]
[0 1 0] [ a a + 1
[a 0 a], [ a a a + 1]
```

```
sage: U3Cl = U3.as_classical_group(); U3Cl
Subgroup of (The projective general unitary
group of degree 3 over Finite Field of size 2)
generated by [(1,7,6)(3,19,14)(4,15,10)(5,11,18)
(12,16,20), (1,12,13)(2,15,19)(4,9,14)(5,18,8)
(6,21,16)
sage: U3Clemb =
U3.as_classical_group(embedded=True); U3Clemb
Matrix group over Finite Field in a of size 2^2
with 2 generators (
[0 \ 0 \ a] \ [a + 1 \ a \ a]
[0 1 0] [ a a + 1
[a 0 a], [ a a a + 1]
```

Overview

Contents

1	Using the CubicBraidGroup class
1.1	Introduction
1.2	Getting started
1.3	First steps
1.4	Classical realization
1.5	Exceptions in Assions series
1.5.1	Description of the exceptions as centralizer
1.6	Conversion maps
1.7	Preimages in the Artin braid group
1.8	Burau matrices for the cubic braid groups
1.9	Other matrix group realizations via the Burau representation
1.10	Realization as complex reflection groups
1.11	Realization as permutation groups
	Other useful methods

```
sage: C3RG = C3.as_reflection_group(); C3RG
Irreducible complex reflection group of rank 2 and
type ST4
sage: coxelem = C3RG.coxeter_element(); coxelem
(1,7,6,12,23,20) (2,8,17,24,9,5) (3,16,10,19,15,21)
(4,14,11,22,18,13)
sage: C3 (coxelem)
c0*c1
sage: C3M5 = sage: C3M5 =
C3.as_matrix_group(characteristic=5); C3M5
Matrix group over Finite Field in rI of size 5^2
with 2 generators (
[2*rI + 2 3*rI + 4 0] [ 1 0 0]
[ 1 0 0] [ 0 2*rI + 2 3*rI + 4]
                        1], [
```

```
sage: C3RG = C3.as_reflection_group(); C3RG
Irreducible complex reflection group of rank 2 and
type ST4
sage: coxelem = C3RG.coxeter_element(); coxelem
(1,7,6,12,23,20) (2,8,17,24,9,5) (3,16,10,19,15,21)
(4,14,11,22,18,13)
sage: C3 (coxelem)
c0*c1
sage: C3M5 = sage: C3M5 =
C3.as_matrix_group(characteristic=5); C3M5
Matrix group over Finite Field in rI of size 5^2
with 2 generators (
[2*rI + 2 3*rI + 4 0] [ 1 0 0]
[ 1 0 0] [ 0 2*rI + 2 3*rI + 4]
                        1], [
```

```
sage: C3RG = C3.as_reflection_group(); C3RG
Irreducible complex reflection group of rank 2 and
type ST4
sage: coxelem = C3RG.coxeter_element(); coxelem
(1,7,6,12,23,20) (2,8,17,24,9,5) (3,16,10,19,15,21)
(4,14,11,22,18,13)
sage: C3 (coxelem)
c0*c1
sage: C3M5 = sage: C3M5 =
C3.as_matrix_group(characteristic=5); C3M5
Matrix group over Finite Field in rI of size 5^2
with 2 generators (
[2*rI + 2 3*rI + 4 0] [ 1 0 0]
[ 1 0 0] [ 0 2*rI + 2 3*rI + 4]
                        1], [
```

```
sage: C3RG = C3.as_reflection_group(); C3RG
Irreducible complex reflection group of rank 2 and
type ST4
sage: coxelem = C3RG.coxeter_element(); coxelem
(1,7,6,12,23,20) (2,8,17,24,9,5) (3,16,10,19,15,21)
(4,14,11,22,18,13)
sage: C3 (coxelem)
c0*c1
sage: C3M5 = sage: C3M5 =
C3.as_matrix_group(characteristic=5); C3M5
Matrix group over Finite Field in rI of size 5^2
with 2 generators (
[2*rI + 2 3*rI + 4 0] [
                      0] [ 0 2*rI + 2 3*rI +
                       1], [
```

These modules contain suggestions for improvements of sage

```
sage/CubicBraidGroup $ ls -ltr lib/*.py
    0 Dez 30    2016 lib/__init__.py
27620 Apr 3    2017 lib/utils_sys.py
41473 Apr 3    2017 lib/utils_gap_interface.py
17263 Apr 3    2017 lib/local_braid.py
21185 Apr 3    2017 lib/local_matrix_group.py
23680 Apr 6    2017 lib/local_permgroup.py
133736 Jun 10 22:17 lib/cubic_braid.py
sage/CubicBraidGroup $
```

For example Tickets #25686, #25706

the following I noticed when I tried to obtain the natural projection from finite unitary and symplectic groups to the corresponding projective groups

```
sage: G = GU(3,2); G
General Unitary Group of degree 3 over Finite
Field in a of size 2^2
sage: MG = G.as_matrix_group(); MG
Matrix group over Finite Field in a of size 2^2
with 2 generators (
[a 0 0] [a 1 1]
[0 \ 1 \ 0] [1 \ 1 \ 0]
[0 0 a], [1 0 0]
sage: mg = MG.an_element(); mg
[a + 1
                 al
           а
                 01
                 0]
```

July 3, 2018

Sebastian Oehms: Cubic Braid Groups

```
sage: G = GU(3,2); G
General Unitary Group of degree 3 over Finite
Field in a of size 2^2
sage: MG = G.as_matrix_group(); MG
Matrix group over Finite Field in a of size 2^2
with 2 generators (
[a 0 0] [a 1 1]
[0 \ 1 \ 0] [1 \ 1 \ 0]
[0 0 a], [1 0 0]
sage: mg = MG.an_element(); mg
[a + 1
                  al
           а
                  0]
                 0]
     а
```

```
sage: G = GU(3,2); G
General Unitary Group of degree 3 over Finite
Field in a of size 2^2
sage: MG = G.as_matrix_group(); MG
Matrix group over Finite Field in a of size 2^2
with 2 generators (
[a 0 0] [a 1 1]
[0 \ 1 \ 0] [1 \ 1 \ 0]
[0 0 a], [1 0 0]
sage: mg = MG.an_element(); mg
[a + 1
                  al
           a
                  01
                  0]
```

```
sage: G = GU(3,2); G
General Unitary Group of degree 3 over Finite
Field in a of size 2^2
sage: MG = G.as_matrix_group(); MG
Matrix group over Finite Field in a of size 2^2
with 2 generators (
[a 0 0] [a 1 1]
[0 \ 1 \ 0] [1 \ 1 \ 0]
[0 0 a], [1 0 0]
sage: mg = MG.an_element(); mg
[a + 1
           a
                 al
                 01
                 0]
```

```
sage: mg = MG.an_element(); mg
[a + 1]
           а
PG = MG.as_permutation_group()
sage: PG(mg)
```

```
sage: mg = MG.an_element(); mg
PG = MG.as_permutation_group()
sage: PG(mg)
                       Now, try to obtain
                       the image of mg
                   in the permutation group
```

```
sage: mg = MG.an_element(); mg
[a + 1 a
PG = MG.as_permutation_group()
sage: PG(mg)
TypeError:
'sage.groups.matrix_gps.group_element.MatrixGrou
pElement_gap' object is not iterable
```

```
sage: conv_ori = PG.convert_map_from(MG);
conv ori
Call morphism:
  From: Matrix group over Finite Field in a of
size 2^2 with 2 generators (....)
  To: Permutation Group with generators
[(2,3,5)(4,7,12)...]
sage: img_mg = conv_ori(mg)
TypeError:
'sage.groups.matrix_gps.group_element.MatrixGrou
pElement_gap' object is not iterable
```

```
sage: conv_ori = PG.convert_map_from(MG);
conv ori
                               Second try
Call morphism:
  From: Matrix group over Finite Field in a of
size 2^2 with 2 generators (....)
  To: Permutation Group with generators
[(2,3,5)(4,7,12)...]
sage: img_mg = conv_ori(mg)
TypeError:
'sage.groups.matrix_gps.group_element.MatrixGrou
pElement_gap' object is not iterable
```

```
sage: conv_ori = PG.convert_map_from(MG);
conv ori
Call morphism:
  From: Matrix group over Finite Field in a of
size 2^2 with 2 generators (....)
  To: Permutation Group with generators
[(2,3,5)(4,7,12)...]
sage: img_mg = conv_ori(mg)
TypeError:
'sage.groups.matrix_gps.group_element.MatrixGrou
pElement_gap' object is not iterable
```

```
sage: conv_ori = PG.convert_map_from(MG);
conv ori
Call morphism:
  From: Matrix group over Finite Field in a of
size 2^2 with 2 generators (....)
  To: Permutation Group with generators
[(2,3,5)(4,7,12)...]
sage: img_mg = conv_ori(mg)
TypeError:
'sage.groups.matrix_gps.group_element.MatrixGrou
pElement_gap' object is not iterable
```

The problem consists of two issues:

- 1) Repair the registered conversion map
- 2) Make the conversion work with __call__

The problem consists of two issues:

- 1) Repair the registered conversion map
- 2) Make the conversion work with ___call__

```
sage: gap_hom = MG.gap().GroupHomomorphismByImages
sage: MGgens = MG.gap().GeneratorsOfGroup()
sage: PGgens = gap(PG).GeneratorsOfGroup()
sage: conv_map_gap = gap_hom(MGgens, PGgens)
sage: def conv_map_func(elem):
          res = conv_map_gap.ImageElm(elem.gap())
         return res.sage()
sage: conv_map = Hom(MG, PG)(conv_map_func)
```

Try to construct the homomorphism via GAP

```
gap_hom = MG.gap().GroupHomomorphismByImages
sage:
     MGgens = MG.gap().GeneratorsOfGroup()
sage:
sage: PGgens = gap(PG).GeneratorsOfGroup()
sage: conv_map_gap = gap_hom(MGgens, PGgens)
sage: def conv_map_func(elem):
          res = conv_map_gap.ImageElm(elem.gap())
         return res.sage()
sage: conv_map = Hom(MG, PG)(conv_map_func)
```

```
gap_hom = MG.gap().GroupHomomorphismByImages
sage:
     MGgens = MG.gap().GeneratorsOfGroup()
sage:
     PGgens = gap(PG).GeneratorsOfGroup()
sage:
sage: conv_map_gap = gap_hom(MGgens, PGgens)
sage: def conv_map_func(elem):
          res = conv_map_gap.ImageElm(elem.gap())
         return res.sage()
sage: conv_map = Hom(MG, PG)(conv_map_func)
```

```
gap_hom = MG.gap().GroupHomomorphismByImages
sage:
     MGgens = MG.gap().GeneratorsOfGroup()
sage:
     PGgens = gap(PG).GeneratorsOfGroup()
sage:
sage: conv_map_gap = gap_hom(MGgens, PGgens)
sage: def conv_map_func(elem):
          res = conv_map_gap.ImageElm(elem.gap())
          return res.sage()
sage: conv_map = Hom(MG, PG)(conv_map_func)
```

```
gap_hom = MG.gap().GroupHomomorphismByImages
sage:
     MGgens = MG.gap().GeneratorsOfGroup()
sage:
     PGgens = gap(PG).GeneratorsOfGroup()
sage:
sage: conv_map_gap = gap_hom(MGgens, PGgens)
sage: def conv_map_func(elem):
          res = conv_map_gap.ImageElm(elem.gap())
          return res.sage()
sage: conv map = Hom (MG, PG) (conv map func)
```

```
gap_hom = MG.gap().GroupHomomorphismByImages
sage:
     MGgens = MG.gap().GeneratorsOfGroup()
sage:
     PGgens = gap(PG).GeneratorsOfGroup()
sage:
sage: conv_map_gap = gap_hom(MGgens, PGgens)
sage: def conv_map_func(elem):
          res = conv_map_gap.ImageElm(elem.gap())
          return res.sage()
sage: conv_map = Hom(MG, PG) (conv_map_func)
sage: img_mg = conv_map(mg); img_mg
(1,2,6,19,35,33)(3,9,26,14,31,23)(4,13,5)(7,22,17)
(8,24,12) (10,16,32,27,20,28) (11,30,18)
(15, 25, 36, 34, 29, 21)
```

```
gap_hom = MG.gap().GroupHomomorphismByImages
sage:
      MGgens = MG.gap().GeneratorsOfGroup()
sage:
      PGgens = gap(PG).GeneratorsOfGroup()
sage:
sage: conv_map_gap = gap_hom(MGgens, PGgens)
sage: def conv_map_func(elem):
           res = conv_map_gap.ImageElm(elem.gap())
           return res.sage()
sage: conv_map = Hom(MG, PG) (conv_map_func)
sage: img_mg = conv_map(mg); img_mg
(1,2,6,19,35,33) (3,9,26,14,31,23) (4,13,5) (7,22,17)
 (8,24,12) (10,16,32,27,20,28) (11,30,18)
(15, 25, 36, 34, 29, 21) Idea: Integrate this in the
         as permutation group method of
        FinitelyGeneratedMatrixGroup_gap
July 3, 2018
                                                       108
```

The problem consists of two issues:

- 1) Repair the registered conversion map
- 2) Make the conversion work with __call

- 1) Repair the registered conversion map
- 2) Make the conversion work with __call_

I solved this overloading the __call__ method of PermutationGroup_generic locally

- 1) Repair the registered conversion map
- Make the conversion work with ___call_

I solved this overloading the __call__ method of PermutationGroup_generic locally

What would be the right way to solve this problem in Sage?

July 3, 2018