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Cubic Braid Groups

Talk on the Sage Days 94 in Saragossa

following the introduction given on CoCalc

Welcome to the Cubic Braid Group page on CoCalc

This page contains a new class declaration to be used with sage. It deals with certain factor groups of the Artin braid group. This class is not integrated into the
sage library, right now. You can test it here on CoCalc (if you are signed in to your own acount) or on your own computer (if you have got sage installed on it).
Everyone is invited to help to improve this class. If you like to get full access to this project (as a collaborator) please contact "s.oehms@web.de".

To learn more about this new class you may follow one of the following links:
Introduction to the Cubic Braid Groups using jupyter notebook (.ipynb)
Introduction to the Cubic Braid Groups using sage worksheet (.sagews)
Download the introduction to the Cubic Braid Groups as PDF

Installation instruction:

Installation of the Cubic Braid Group class

Download

Go to the "Files"-Menue an click on the Icon on the right of "cbg.tgz" (cloud with download arrow) !
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https://cocalc.com/share/b31290a1-fcab-4b04-aae3-be9344dc0451/CubicBraidGroup/introduction.ipynb?viewer=share
https://cocalc.com/share/b31290a1-fcab-4b04-aae3-be9344dc0451/CubicBraidGroup/introduction.sagews?viewer=share
https://cocalc.com/share/b31290a1-fcab-4b04-aae3-be9344dc0451/CubicBraidGroup/introduction.pdf?viewer=share
https://cocalc.com/share/b31290a1-fcab-4b04-aae3-be9344dc0451/CubicBraidGroup/README.txt?viewer=share
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Introduction

This module is devoted to factor groups of the Artin braid groups, such that the images s; of the
braid generators have order three:

In general these groups have firstly been investigated by Coxeter, HS.M in: “Factor groups of
the braid groups, Proceedings of the Fourth Candian Mathematical Congress (Vancover 1957), pp.
95-122",

Coxeter showed, that these groups are finite as long as the number of strands is less than 6 and
infinite elsewise. More explicitely the factor group on three strand braids is isomorphic to 5L(2, 3),
on four strand braids to GU(3, 2) and on five strand braids to Sp(4, 3) x C3. Coxeter realized these
groups as subgroups of unitary groups with respect to a certain hermitian form over the complex
numbers (in fact over () adjoined with a primitive 12-th root of unity).
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Artin Braid Groups
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sage: knoth 2 = Link(braid5_ 2)
sage: knotb 2.plot ()
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Why are cubic braid groups
Interesting?
The HOMFLY-PT Polynomial

The HOMFLY-PT polynomial H[:L}{m 3} (see [HOMFLY] and [PT]) of a knot or link [, is defined by the skein relation
aH (X) —a'H (X) = 2H (3()
and by the initial condition H[:O)=l.
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The Kauffman Polynomial

The Kauffman polynomial F[f{) [[1._1 3) (see [Kauffman]) of a knot or link [ is ﬂ_—w{H]L{I{) where w(L) is
Computed?) and where L[ff) is the regular isotopy invariant defined by the skein relations

L({s,) = aL(s), L(s_) = a 'L(s)
(here 5 is a strand and S is the same strand with a L kink added) and
L(X) 4+ L(X)=z(LOQ + LX)
and by the initial condition L,(U/') = 1 where [J is the unknot ()
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Why are cubic braid groups

.

Homfly-PT

Interesting?
y - From Louis Kauffman’s

Th form the chart :
S Gt IOFm 18 . book: Knots and Physics
page 54.
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What i1s known about them?

Since the finite ones are irreducible complex
reflection groups enumerated in the Shephard-
Todd classification with ST-numbers 4, 25 and

32, a lot of results from this theory applies.
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What i1s known about them?

In “Einige endliche Faktorgruppen der Zopfgruppen” (Math. Z., 163 (1978), 291-302) J. Assion
considered two series S(m) and U(m) of finite dimensional factors of these groups. The additional
relations on the braid group generators {s),- - ,sp—1} are

s3sitosity tatasity ‘t; T =1 for m>=5 incaseof S(m)
thitg=1 for m>=5 incaseof U(m)

where t; = (sisit1)®. He showed that each series of finite cubic braid group factors must be an
epimorhic image of one of his two series, as long as the groups with less than 5 strands are the full
cubic braid groups, whereas the group on 5 strands is not. He realized the groups S(m) as symplectic
groups over GF(3) (resp. subgroups therein) and U(m) as general unitary groups over GF(4) (resp.
subgroups therein).
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Functionality of the class

This class implements all the groups conidered by Coxeter and Assion as finitely presented groups
(via the gap interface) together with the classical realizations given by the authors. It also contains
the coercion maps between the two ways of realization. In addition the user can construct other
realizations and maps to matrix groups with help of the burau representation. In case gap3 and
CHEVIE are installed under sage version 7.2 (or later) the reflection groups via the gap3 interface
are availlable, too. The methods for all this functionality are:
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Examples of
general cubic braid groups

sage: from cubic_braid import *

sage: C3 = CubicBraidGroup (3) ; C3
Cubic Braid group on 3 strands
sage: C3Cl = C3.as_classical group(); C3Cl

Subgroup of Unitary Group of degree 2 over Universal
Cyclotomic Field with respect to hermitian form

[-E(12)A7 + E(12)A1A11 -1]

[ -1 -E(12)A7 + E(12)A11l] generated by:
([ E(3) E(12)A11]

[ 0 11, | 1 0]

[E(12)A11 E(3)1)

braid5 2inC3 = C3(braid5_2)

sage: braid5_2inC3Cl = C3Cl (braid5_2inC3); braid5_2inC3Cl
[-E(3)A2 E(12)A7]

[ 0 -1]

sage: braidb_ 2inC3back = C3 (braid5_2inC3Cl); braid5_2inC3back
cO0*cl*cOA2*cl

sage: braidb_ 2inC3 == braid5_2inC3back
True
sage: braidb 2inC3.braid() == braidb5_2inC3back.braid()
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general cubic braid groups

sage: from cubic_braid import *

sage: C3 = CubicBraidGroup (3) ; C3
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Ju False

sage: braid5_2inC3back = C3(braid5_21inC3Cl); braid5_2inC3back
cO*cl*cOA2*cl - e )
sage: braid5 2inC3 == braid5_ 2 3back

True :
sage: braids_2inc3.braid() == braids_sinGONVEHing bACK
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Examples of
general cubic braid groups

braid5_2inC3 = C3 (braid5_2)

sage: braid5_ _2inC3Cl = C3Cl (braidb5_ 2inC3); braid5_2inC3Cl
[-E(3)A2 E(12)A7]

[ 0 -1]

sage: braidb5_ 2inC3back = C3(braidb5_2inC3Cl); braidb5_2inC3back
cO*cl*c0A2*cl T .

sage: braidb5_2inC3 == braidgiéiQQBbéCk
True = |
sage: braidb_2inC3.braid() == braid%_Z 1n§9£‘é’f§egﬂgdbﬁ0k

False N >
sage: braid5 2inC3back.braid() .plot () -
Launched png viewer for Graphics object consisting of 20
graphics primitives

sage: Link (braid5_2inC3back.braid()) .plot ()

Launched png viewer for Graphics object consisting of 24
graphics primitives
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pre-image in the braid group
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Examples of
general cubic braid groups

braid5_2inC3 = C3 (braid5_2)

sage: braid5_ _2inC3Cl = C3Cl (braidb5_ 2inC3); braid5_2inC3Cl
[-E(3)A2 E(12)A7]

[ 0 -1]

sage: braidb5_ 2inC3back = C3(braidb5_2inC3Cl); braidb5_2inC3back
cO0*cl*cOn2*cl

sage: braidb_2inC3 == braid5_2inC3back

True

sage: braidb5_2inC3.braid() == braidb5_2inC3back.braid/()
False

sage: braidb5_2inC3back.braid() .plot ()

Launched png viewer for Graphics objeéﬁ\consisting of 20
graphics primitives

sage: Link (braid5_2inC3backNoraxd()) .plot TSN jﬁf
Launched png viewer for G \H; A
graphics primitives fk A%
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Examples of
general cubic braid groups

braid5_21inC3 = C3 (braidb_2)

[-E(3)A2 E(12)A7]
[ 0 - 1]

sage: braid5_ 2inC3Cl = C3Cl (braidb_2inC3) ;

braid5 2inC3Cl

sage: braidb5_2inC3back = C3(bra” 1"
cO*cl*c0A2*cl

sage: braidb5_2inC3 == braidb_2i
True

sage: braidb_ 2inC3.braid() == b
False

sage: braidb5_ 2inC3back.braid().

Launched png viewer for '
graphics primitives
sage: Link (braid5_2inC3back.bra

Launched png viewer for Graphic
graphics primitives

July 3, 2018 Sebastian Oehms:

o WIS e Ve

a0\ ] .

ar-

N AN - -

/

i a———

64



Examples of Assion Groups

sage: S3 = AssionGroupS(3); S3
Assion group on 3 strands of type S
sage: U3 = AssionGroupU(3); U3
Assion group on 3 strands of type U
sage: C3.1s_i1somorphic(S3)

True

sage: C3.1s_isomorphic (U3)
True

sage: C3 == S3

False

sage: C3 == U3

False

sage: S3 == U3

False
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Assion Groups of higher order

sage: S5.order ()

51840

sage: U5.order ()

77760

sage: C5.order ()

155520

sage: S5Cl1 = S5.as_classical group(); S5Cl
Symplectic Group of degree 4 over Finite Field
of size 3

sage:

sage: USCl = US5.as_classical group(); U5Cl
General Unitary Group of degree 4 over Finite
Field 1n a of size 2A2
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Exceptions in Assion Group Series

sage: U3Cl = U3.as_classical group(); U3Cl
Subgroup of (The projective general unitary
group of degree 3 over Finite Field of size 2)
generated by [(1,7,6) (3,19,14) (4,15,10) (5,11,18)
(12,16,20), (1,12,13) (2,15,19) (4,9,14) (5,18, 8)
(6,21,16)]

sage: U3Clemb =
U3.as_classical group (embedded=True); U3Clemb

Matrix group over Finite Field 1n a of size 2A2
with 2 generators (

(0 0 a] a + 1 a al
(0 1 0] [ a a + 1 al
a 0 al], | a a a + 1]

)
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Other Realizations

sage: C3RG = C3.as_reflection _group(); C3RG
Irreducible complex reflection group of rank 2 and
type ST4

sage: coxelem = C3RG.coxeter element(); coxelem
(1,7,6,12,23,20) (2,8,17,24,9,5) (3,16,10,19,15,21)
(4,14,11,22,18,13)

sage: C3 (coxelem)

cO0*cl

sage: C3Mb = sage: C3M5H =
C3.as_matrix group (characteristic=5); C3M5
Matrix group over Finite Field in rI of size 5A2
with 2 generators (

[2*rT + 2 3*rI + 4 0] [ 1 0 0]
[ 1 0 0] [ 0 2*rT + 2 3*rI + 4]
[ 0 0 11, | 0 1 0]

)
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Irreducible complex reflection group of rank 2 and
type ST4

sage: coxelem = C3RG.coxeter element(); coxelem
(1,7,6,12,23,20) (2,8,17,24,9,5) (3,16,10,19,15,21)
(4,14,11,22,18,13)

sage: C3 (coxelem)

cO0*cl

sage: C3Mb = sage: C3M5H =
C3.as_matrix group (characteristic=5); C3M5

Matrix group over Finite Field in rI of size 5A2
with 2 generators (

[2*rT + 2 3*rI + 4 0] [ 1 0 0]
[ 1 0 0] [ 0 2*rT + 2 3*rI + 4]
[ 0 0 11, | 0 1 0]

)
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Implementation

sage/CubicBraidGroup

0
27620
41473
17263
21185
23680

133736

Dez

30 2016
3 2017
3 2017
3 2017
3 2017
6 2017

10 22:17

sage/CubicBraidGroup

July 3, 2018

$ 1s -1ltr lib/*.py

lib/ init  .py

lib/utils _sys.py
lib/utils _gap_ interface.py
lib/local _braid.py
lib/local matrix group.py
lib/local _permgroup.py
lib/cubic _braid.py

$
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Implementation

sage/CubicBraidGroup

0
27620
41473
17263
21185
23680

133736

Dez

30 2016
3 2017
3 2017
3 2017
3 2017
6 2017

10 22:17

sage/CubicBraidGroup

July 3, 2018

$ 1s -1ltr lib/*.py

lib/ init  .py

lib/utils _sys.py
lib/utils _gap_ interface.py
lib/local _braid.py
lib/local matrix group.py
lib/local_ permgroup.py
lib/cubic _braid.py

$
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Implementation

sage/CubicBraidGroup

0
27620
41473
17263
21185
23680

133736

Dez

30 2016
3 2017
3 2017
3 2017
3 2017
6 2017

10 22:17

sage/CubicBraidGroup

July 3, 2018

$ 1s -1ltr lib/*.py

lib/ init  .py
lib/utils_sys.py

lib/utils _gap_interface.py
lib/local _braid.py
lib/local matrix group.py
lib/local_ permgroup.py
lib/cubic _braid.py

$
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Implementation

sage/CubicBraidGroup

0
27620
41473
17263
21185
23680

133736

Dez

30 2016
3 2017
3 2017
3 2017
3 2017
6 2017

10 22:17

sage/CubicBraidGroup

July 3, 2018

These modules contain suggestions for
Improvements of sage

$ 1s -1ltr lib/*.py

lib/ init  .py
lib/utils_sys.py

lib/utils _gap_interface.py
lib/local _braid.py
lib/local_matrix group.py
lib/local. permgroup.py
lib/cubic_Br@id.py

;
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Implementation

sage/CubicBraidGroup

0
27620
41473
17263
21185
23680

133736

Dez 30 2016
Apr 3 2017
Apr 3 2017
Apr 3 2017
Apr 3 2017
Apr 6 2017
Jun 10 22:17

sage/CubicBraidGroup

July 3, 2018

$ 1s -1ltr lib/*.py

lib/ init  .py
lib/utils_sys.py

lib/utils _gap_interface.py
lib/local _braid.py
lib/local_matrix group.py
lib/local. permgroup.py
lib/cubic_Br@id.py

;

For example Tickets #25686, #25706
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Sage-problems | had to solve

the following | noticed when | tried to obtain the
natural projection from finite unitary and
symplectic groups to the corresponding projective
groups
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Sage-problems | had to solve

sage: G = GU(3,2); G

General Unitary Group of degree 3 over Finite
Field 1n a of size 2A2

sage: MG = G.as_matrix group(); MG

Matrix group over Finite Field 1n a of size 2A2
with 2 generators (

[a 0 O] [a 1 1]

[0 1 O] [1 1 0]

[0 0 a], [1 O O]

)

sage: mg = MG.an_element(); mg
a + 1 a al
[ 1 1 0]

a 0 0]
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Sage-problems | had to solve

sage: G = GU(3,2); G

General Unitary Group of degree 3 over Finite
Field 1n a of size 2A2

sage: MG = G.as_matrix group(); MG

Matrix group over Finite Field 1n a of size 2A2
with 2 generators (

[a 0 0] [a 1 1]

[0 1 O] [1 1 0]

[0 0 a], [1 O O]

)

sage: mg = MG.an_element(); mg
a + 1 a al
[ 1 1 0]

a 0 0]
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Sage-problems | had to solve

sage: G = GU(3,2); G

General Unitary Group of degree 3 over Finite
Field 1n a of size 2A2

sage: MG = G.as_matrix group(); MG

Matrix group over Finite Field 1in a of size 2A2
wlith 2 generators (

[a 0 O] [a 1 1]

[0 1 O] (1 1 0]

[0 0 al], [1 O O]

)

sage: mg = MG.an_element(); mg

a + 1 a al
' 1 1 0]
a 0 0]
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Sage-problems | had to solve

sage: G = GU(3,2); G

General Unitary Group of degree 3 over Finite
Field 1n a of size 2A2

sage: MG = G.as_matrix group(); MG

Matrix group over Finite Field 1n a of size 2A2
with 2 generators (

[a 0 0] [a 1 1]

[0 1 O] [1 1 0]

[0 0 a], [1 O O]

)

sage: mg = MG.an element(); mg
a + 1 a al
[ 1 1 0]

a 0 0]
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Sage-problems | had to solve

sage: mg = MG.an element(); mg

a + 1 a a |
[ 1 1 0]
a 0 0]

PG = MG.as_permutation group ()
sage: PG (mg)
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Sage-problems | had to solve

sage: mg = MG.an element(); mg

a + 1 a a |
[ 1 1 0]
a 0 0]

PG = MG.as_permutation group ()
sage: PG (mg)

Now, try to obtain
the image of mg
In the permutation group
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Sage-problems | had to solve

sage: mg = MG.an element(); mg

a + 1 a a |
' 1 1 0]
a 0 0]

PG = MG.as_permutation group ()
sage: PG (mg)

'sage.groups.matrix gps.group_element.MatrixGrou
pElement_gap' object 1s not i1terable
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Sage-problems | had to solve

sage: conv_oril = PG.convert_map_from (MG) ;
conv_ori

Call morphism:
From: Matrix group over Finite Field 1in a of

size 2A2 with 2 generators (...)

To: Permutation Group with generators
[(2,3,5)(4,7,12)... ]
sage: 1mg mg = conv_oril (mg)

'sage.groups.matrix gps.group_element.MatrixGrou
pElement gap' object 1s not i1iterable
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Sage-problems | had to solve

sage: conv_orl = PG.convert map from(MG) ;
conv_ori -
Call morphism: ’
From: Matrix group over Flnlte Field i1n a of
size 2A2 with 2 generators (...)
To: Permutation Group with generators
[(2,3,5)(4,7,12)... ]
sage: 1mg mg = conv_oril (mg)

Secondtry

'sage.groups.matrix gps.group_element.MatrixGrou
pElement gap' object 1s not i1iterable
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Sage-problems | had to solve

sage: conv_orili = PG.convert map_ from (MG) ;
conv_ori
Call morphism:

From: Matrix group over Finite Field 1in a of
size 2A2 with 2 generators (...)

To: Permutation Group with generators
[(2,3,5)(4,7,12)... ]
sage: 1mg mg = conv_oril (mg)

'sage.groups.matrix gps.group_element.MatrixGrou
pElement gap' object 1s not i1terable

July 3, 2018 Sebastian Oehms: Cubic Braid Groups
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Sage-problems | had to solve

sage: conv_orili = PG.convert map_ from (MG) ;
conv_ori
Call morphism:

From: Matrix group over Finite Field 1in a of
size 2A2 with 2 generators (...)

To: Permutation Group with generators
[(2,3,5)(4,7,12)... ]
sage: 1mg_mg = conv_ori (mg)

'sage.groups.matrix gps.group_element.MatrixGrou
pElement gap' object 1s not iterable

July 3, 2018 Sebastian Oehms: Cubic Braid Groups
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Sage-problems | had to solve

The problem consists of two issues:

1) Repair the registered conversion map
2) Make the conversion work with __ call

July 3, 2018 Sebastian Oehms: Cubic Braid Groups
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Sage-problems | had to solve

The problem consists of two issues:

1) Repair the registered conversion map
2) Make the conversion work with __ call
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Sage-problems | had to solve

gap_hom = MG.gap () .GroupHomomorphismByImages
MGgens = MG.gap () .GeneratorsOfGroup ()

PGgens = gap (PG) .GeneratorsOfGroup ()
conv_map_gap = gap_hom (MGgens, PGgens)

def conv_map_ func(elem) :

res = conv_map_gap.ImageElm(elem.gap())
return res.sage ()
conv_map = Hom (MG, PG) (conv_map_func)

Sebastian Oehms: Cubic Braid Groups
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Sage-problems | had to solve

sage: gap_hom = MG.gap () .GroupHomomorphismByImages
sage: MGgens = MG.gap () .GeneratorsOfGroup ()

sage: PGgens = gap (PG) . GeneratostfGroup()

sage: conv_map_gap = gap._. hom(MGgens, PGgens)

sage: def conv_map func(elem):‘

o oo E res = conv_map_gap. ImageElm(elem gap () )
e e e sl return res.sage ()
sage: conv_map = Hom (MG, PG) (conv_map_func)

Try to construct the
homomorphism
via GAP

Jlﬂy 3’ 2018 : Sebastian Oehms: Cubic Braid Groups - 100
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Sage-problems | had to solve

gap_hom = MG.gap () .GroupHomomorphismByImages

MGgens = MG.gap () .GeneratorsOfGroup ()
PGgens = gap (PG) .GeneratorsOfGroup ()

conv_map_gap = gap_hom (MGgens, PGgens)
def conv_map_ func(elem) :

res = conv_map_gap.ImageElm(elem.gap())
return res.sage/()
conv_map = Hom (MG, PG) (conv_map_func)

Sebastian Oehms: Cubic Braid Groups
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Sage-problems | had to solve

sage: gap_hom = MG.gap () .GroupHomomorphismByImages
sage: MGgens = MG.gap () .GeneratorsOfGroup ()
sage: PGgens = gap (PG) .GeneratorsOfGroup ()

sage: conv_map gap = gap_hom (MGgens, PGgens)
sage: def conv_map_ func(elem) :

b oo f res = conv_map_gap.ImageElm(elem.gap())
S 6008 return res.sage/()
sage: conv_map = Hom (MG, PG) (conv_map_func)
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Sage-problems | had to solve

sage: gap_hom = MG.gap () .GroupHomomorphismByImages
sage: MGgens = MG.gap () .GeneratorsOfGroup ()
sage: PGgens = gap (PG) .GeneratorsOfGroup ()
sage: conv_map gap = gap_hom (MGgens, PGgens)
sage: def conv map func(elem) :
. res = conv_map_gap.ImageElm(elem.gap())
S 6008 return res.sage/()

sage: conv_map = Hom (MG, PG) (conv_map_func)
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Sage-problems | had to solve

sage: gap_hom = MG.gap () .GroupHomomorphismByImages
sage: MGgens = MG.gap () .GeneratorsOfGroup ()
sage: PGgens = gap (PG) .GeneratorsOfGroup ()
sage: conv_map gap = gap_hom (MGgens, PGgens)
sage: def conv_map func(elem) :
b oo f res = conv_map_gap.ImageElm(elem.gap())
o oo return res.sage/()

sage: conv_map = Hom (MG, PG) (conv._map_ func)
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Sage-problems | had to solve

sage: gap_hom
sage: MGgens =
sage: PGgens =

MG.gap () . GroupHomomorphismByImages

gap (PG) .GeneratorsOfGroup ()

MG.gap () .GeneratorsOfGroup ()

sage: conv_map gap = gap_hom (MGgens, PGgens)

sage: def conv_map func

res

(elem) :

conv_map_gap

S 6008 return res.sage/()

sage: conv_map

sage: 1mg mg =

.ImageElm(elem.gap () )

= Hom (MG, PG) (conv_map_func

conv_map

(mg) ;

img_mg

)

(1L,2,6,19,35,33) (3,9,26,14,31,23) (4,13,5) (7,22,17)
(8,24,12) (10,16,32,27,20,28) (11,30,18)
(15,25,36,34,29,21)

July 3, 2018
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Sage-problems | had to solve

.GroupHomomorphismByImages

MG.gap () .GeneratorsOfGroup ()
gap (PG) .GeneratorsOfGroup ()

gap_hom (MGgens, PGgens)

conv_map._gap.

= Hom (MG, PG) (conv_map_func

conv_map (mg) ; 1mg_mg

9,26,14,31,23) (4,13,5) (

sage: gap_hom = MG.gap ()
sage: MGgens =

sage: PGgens =

sage: conv_map_gap =

sage: def conv _map func(elem) :
..... res =

..... return res.sage/()
sage: conv._map

sage: 1lmg_mg = .
(1,2,6,19,35,3%%
(8,24,12) (10,16,32

(

July 3,2018

7,20,28) (11,30,18)

ImageElm(elem.gap () )

)

7,22,17)

15,25,36,34,2
\dea:’ Integrate this in the
as_permutation _group method of
FlnlterGeneratedI\/Iatrleroup gap

Sebastian Oehms: Cubic Braid Groups
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Sage-problems | had to solve

The problem consists of two issues:

1) Repair the registered conversion map
2) Make the conversion work with  call
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Sage-problems | had to solve

1) Repair the registered conversion map
2) Make the conversion work with _ call

| solved this overloading the _ call  method of |
PermutationGroup_generic locally
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Sage-problems | had to solve

1) Repair the registered conversion map
2) Make the conversion work with __ call

| solved this overloading the _ call  method of |
PermutationGroup_generic locally

~ What would be the right way
to solve this problem in Sage?

July 3,2018 111



	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Folie 82
	Folie 83
	Folie 84
	Folie 85
	Folie 86
	Folie 87
	Folie 88
	Folie 89
	Folie 90
	Folie 91
	Folie 92
	Folie 93
	Folie 94
	Folie 95
	Folie 96
	Folie 97
	Folie 98
	Folie 99
	Folie 100
	Folie 101
	Folie 102
	Folie 103
	Folie 104
	Folie 105
	Folie 106
	Folie 107
	Folie 108
	Folie 109
	Folie 110
	Folie 111

