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DISCRETE MATHEMATICS 2 (1972) 111—113. North-Holland Publishing Company

A NOTE ON HAMILTONIAN CIRCUITS*

V. CHVATAL

Department of Computing Science, Stanford University,
Stanford, Calif. 94305, U.S.A.

P. ERDOS

Hungarian Academy of Sciences, Mathematical Institu te,
Budapest XII, Hungary

Received 23 June 197] *=*

The purpose of this note is to prove the following

Theorem 1. Ler G pe a graph with at least three vertices. If, for some
S. G is s-connected and contains no independent set of more than s
vertices, then G has a Hamiltonian circuit. |

This theorem is sharp as the complete bipartite graph K(s, s+1) is
§-Connected, contains no independent set of more than s+1 vertices
and has no Hamiltonian circuit. Similarly, the Petersen graph is 3-con-
fiected, contains no independent set of more than four vertices and
has no Hamiltonian circuit.

Proof. Let ¢ satisfy the hypothesis of Theorem 1. Clearly, G contains

a circuit; let C be the longest one. If & has no Hamiltonian circuit,

there is a vertex x with x &€ C. Since G is s-connected, there are s paths
starting at x and terminating in C which are pairwise disjoint apart from
X and share with C just their terminal vertices Xy, Xy, ..., X (see [1],
Theorem 1). Foreachi=1, 2, ..., s, let »; be the successor of x; in a

" This note was written in Professor Richard K. Guy’s car on the way from Pullman to Spokane,
- Wash, The autors wish to express their gratitude to Mrs. Guy for smooth driving.
Revised version received 13 September 1971. B
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fixed cyclic ordering of C. No y; is adjacent to x - otherwise we would
replace the edge x,;y; in C by the path going from x; to y; outside C
(via x) and obtain a longer circuit. However, G contains no independent
set of s+1 vertices and so there is an edge Yy Delete the edges x;y;,
x;¥; from C and add the edge y;y; together with the path going from

x; to x; outside C. In this way we obtain a circuit longer than C, which
is a contradiction.

For s relatively large with respect to the number of vertices of G,
our Theorem 1 follows from a stronger statement due to Nash-Williams
and Bondy ([2], Lemma 4):
~ Let G be a graph with n vertices, n =2 3. Let G contain no vertex of
degree smaller than k where k is an integer such that k > _%(n+2). Then
G either has a Hamiltonian circuit, or is separable, or has k+1 indepen-
dernt vertices.

As an easy consequence of Theorem 1 we obtain

Theorem 2. Let G be an s-cbnnected graph with no i'ndependent setof
s+2 vertices. Then G has a Hamiltonian path. ' |

Proof. Indeed, if G satisfies the hypothesis of Theorem 2, then G+x
(the graph obtained from G by adding a new vertex x and joining it to
all the vertices of @) satisfies the hypothesis of Theorem 1 with s+l in
place of 5. Therefore G+x has a Hamiltonian circuit and G has a Hamil- -
tonian path. The complete bipartlte graph K(s, s+2) shows that Theorem
2 is sharp.

The technique used in the proof of Theorem 1 yields also
Thé'orem 3. Let G be a;_i ,sécon_nectéd gfaph containing no independent
set of s vertices. Then G is Hamiltonian-connected (i.e. every pair of

vertices is joined by a Hamiltonian path).

Proof. Let there be a codnterexample G. Then G contains three vertices
x, ¥, z such that x &€ P for a longest path P joining ¥ to z. Again, we find

~ s paths from x to P, their terminal vertices being x,, ..., x;. We may as- |
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sume X; ¥ z for { < s and denote the successor (in the direction from
y to z) of each x; (i < 5) by »;. Since G has no s independent vertices,
there i1s an edge x); or YiVi- In both cases we find a path joining y to
z and longer than P which is a contradiction. The graph K(s, s) shows
that Theorem 3 is sharp.
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