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Historical Information (7-9)

Genius has its pitfalls, and may not always be a blessing,
as proved in music by Mozart and in mathematics by Ga-
lois. Another genius, William Rowan Hamilton (1805-
1865, see Fig. 1), was born in Dublin where he lived all his
life. He was, like Mozart, a child prodigy. At age three he
was a superior reader of English and was considerably ad-
vanced in arithmetic. At four he was a good geographer. At
five he read and translated Latin, Greek, and Hebrew.
When he reached the age of 13 he spoke and read 13 for-
eign languages (including Italian, French, Persian, Arabic,
and Sanskrit). He never attended school before going to
the university, but he received his training privately,
mainly from an uncle because both his parents had died
when he was a child. He entered Trinity College, Dublin,
and he carried off all the available prizes. His fame led to
the unprecedented appointment of Hamilton as Royal As-
tronomer of Ireland, Director of the Dunsink Observatory,
and Professor of Astronomy in an open competition in 1827
when he was still an undergraduate. His superabundant
energy erupted in many directions including poetry. He be-
friended Coleridge and Wordsworth. Wordsworth per-
suaded Hamilton to concentrate on science. Wordsworth
also said that the only two men who had ever given him a
feeling of inferiority were Coleridge and Hamilton.

At the age of 23, Hamilton published “A Theory of Sys-
tems of Rays” that laid the mathematical structure of op-
tics in the manner Lagrange had done for mechanics.
Hamilton’s treatment predicted surprising qualitatively
new features of conical refraction that were subsequently
found by Humphrey Lloyd in certain crystals. This tri-
umph led to a knighthood for Hamilton when he was 30,
and to his election in the Royal Irish Academy when he was
27; he served as its president between 1837 and 1845. In
Ireland at that time, being knighted by the British Crown
did not endear Sir William Rowan Hamilton to the general
public and contributed to his increasing isolation.

In 1833 he married a sickly woman who soon became
semi-invalid and neglected the household.

Hamilton introduced his ideas (which worked so well in
optics) into mechanics by applying the principle of least
action in two papers published in 1834 and 1935. For con-
servative systems (where the components of force are de-
rivable from a potential that is a function of position only),
Hamilton’s principle reduces to Lagrange’s, but unlike the
latter principle, the former also holds for nonconservative
systems. Jacobi described Hamilton’s differential equa-
tions as “canonical”.

'Permanent address: Department of Organic Chemistry, Polytech-
nic University, Bucharest, Roumania.

Figure 1. W. R. Hamilton as portrayed by a contemporary artist with
his mace of office as President of the royal Academy or Ireland.

After the formulation of quantum mechanics, Hamilton’s
function H has assumed a central role when Schroedinger
formulated his stationary state equation expressable as

HY=EY

(here ¥ is the system’s wave function and eigenvalues E
correspond to allowed energies). Further, in another fun-
damental formulation of quantum mechanics via Feyn-
man path integrals, the variable integrand in Hamilton’s
variational principle becomes the “phase” along each pos-
sible path. Indeed, this particular result might not be
wholly unexpected because Hamilton was seeking to de-
scribe both optical and mechanical ( i.e., wave and particle)
phenomena within a unified variational principle.

Hamilton motivated the modern vectorial formulation of
classical mechanics with his axiomatic introduction of the
first non-commutative algebra, based on quaternions,
which he believed to be his foremost contribution to sci-
ence. In trying to approach algebra logically, he modeled
complex numbers by pairs of ordered numbers, which can
represent rotation in a two-dimensional space, and from
here he went on trying to represent rotations in a three-di-
mensional space by triplets. For years his efforts remained
unsuccessful. Frequently, at the breakfast table, his sons
asked him: “Daddy, can you multiply triplets?” to which
Hamilton replied ruefully: “I can add and subtract triplets,
but I cannot multiply them”. And then, one day in October
1843, as he was walking from the Observatory to Dublin
for a meeting of the Academy, the basis for this quaternion
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algebra came to him in a flash: three “imaginary” units i, j,
k, were needed for quaternions g:

g=ai+bj+ck+d

where a, b, ¢, d are ordinary real numbers. He was so im-
pressed by his idea that he cut with a knife in the stone of
Brougham Bridge the generative formulas:

2= =k? =ijk=-1

Following Hamilton’s publication, other types of “hyper-
complex” algebras were announced (though Hamilton’s
quaternions remain a unique example of an associative al-
gebra with no divisors of zero). Hamilton believed that
quaternions were involved in a fundamental incorporation
of time into theoretical science, and amusingly the four-di-
mensional quaternion algebra later turned out to be inti-
mately related to the four-dimensional space-time frame of
Maxwell’s electromagnetism and of Einstein’s special the-
ory of relativity. Also hypercomplex algebras were the first
forefront area of research focused on by the then fledgling
American mathematical community.

In the last days of his life, Hamilton was elected as the
first foreign member of the National Academy of Sciences
of the United States (newly founded during the Civil War).

The chapter in Bell’s classic “Men of Mathematics” (8)
devoted to Hamilton starts: “William Rowan Hamilton is
by long odds the greatest man of science that Ireland has
produced”. But this chapter seems to be rather arguably
entitled “An Irish Tragedy”. The tragedy is claimed to be
due to Hamilton’s nonideal marriage, his obsession with
quaternions, and his indulgence with drinking (although
as pointed out by Professor Lanczos (9), “his ocassional
drinking bouts are something that we would hardly call a
‘tragedy’ here in Ireland”). Perhaps some of these aspects
are yet another parallel with Mozart.

Hamilton’s scientific contributions (which he once de-
scribed as his “real poetry”) are so fundamental that one
might anticipate some of them to have importance not only
in physics and mathematics, but also in chemistry and
other fields.

Hamiltonian Circuits

By association with his noncommutative algebra, Ham-
ilton invented and published in 1856 “the icosian calculus”,
which involves paths on the graph of the regular dodecahe-
dron. He then used the graphical interpretation as the ba-
sis of a puzzle which he called “The Icosian Game”, and
exibited it at the meeting of the British Association in Dub-
lin in 1857. He sold the idea to a whoesale dealer in games
for £25, but this game did not prove to be a commercial
success; Rubik’s cube seems more appealing.

The object of the game was to find paths and circuits on
the dodecahedral graph, satisfying certain conditions. One
version of Hamilton’s game called “The Traveller’s Dodeca-
hedron” or “A Voyage Round the World” involved a solid
regular dodecahedron whose vertices had pegs labelled
with names of 20 world cities. The aim of the game was to
loop a thread around these pegs to indicate a circuit pass-
ing once through each city (10).

Such circuits are now called “Hamiltonian circuits”, and
occupy a prominent place in modern graph theory. These
circuits lead to many interesting problems, some of which
are not yet solved. For instance, to establish whether a
given graph is Hamiltonian ( i.e., whether it has a Hamil-
tonian circuit) is generally non-trivial.

Interestingly, it appears that the general problem of such
circuits in graphs had been published independently in
1856 (before Hamilton’s paper had appeared) by an ama-
teur mathematician, Thomas Penyngton Kirkman, who
for over 50 years (1840-1892) was rector of a small parish
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in Lancashire but owing to his mathematical contributions
was elected a Fellow of the Royal Society in 1857 (10).
However, Hamilton’s fame (and possibly his game) led to
the general acceptance of the term “Hamiltonian circuit”.

Of course chemical structural formulas can be viewed as
realizations of mathematical graphs, so that it should per-
haps not be surprising that Hamiltonian circuits might
also play an important role in chemistry.

IUPAC Names for Polycyclic Compounds

Adolf von Baeyer (1835-1917, Nobel Prize for Chemistry
in 1905) was a PhD student of Kekulé, and taught organic
chemistry at the University of Berlin and Munich (Ger-
many). In the latter position he succeeded Liebig and re-
mained there from 1875 till 1913. He devised syntheses for
uric acid, isatin, indigo, and triarylmethane dyes. In addi-
tion to his experimental contributions to the founding and
development of German dyestuff industry (from which he
refused any profit), Baeyer developed theoretical views on
steric strain in cyclic compounds and on aromaticity. From
his investigations of cycloalkanes and polycyclic deriva-
tives, he devised nomenclature rules that hold to this day
(and, as we shall see, involve Hamiltonian circuits).

Adolf von Baeyer proposed a system for naming bicyclic
compounds, which later had been generalized to polycyclic
systems, and has been adopted by the IUPAC Committee
for Nomenclature. Rule A-32.31 runs as follows (11).

IUPAC Rule A-32-31: The von Baeyer System

When there is a choice, the following criteria are consid-
ered in turn until a decision is made.

(a) The main ring shall contain as many carbon atoms as posi-
ble, two of which must serve as bridgeheads for the main
bridge.

(b) The main bridge shall be as large as possible.

(¢) The main ring shall be divided as symetrically as possible
by the main bridge.

(d) The superscripts locating the other bridges shall be as
small as possible.

We shall apply this rule to naming polyeyclic Hamil-
tonian graphs consisting of v = 2n vertices, each of which
is the meeting place for three edges ( i.e., has degree 3).
Such graphs are called cubic graphs. Molecular graphs of
fulleranes (CH),, and of all other valence isomers of an-
nulenes (12) are represented by cubic graphs. In such
graphs, there are e = 3n edges, and the so-called cyclomatic
numberism =e—v + 1 =n + 1. This number indicates how
many edges one needs to remove in order to obtain an acy-
clic but still connected graph. The fullerane graphs studied
here have the further feature that they can be embedded
on the surface of a sphere showing only five- and six-mem-
bered rings.

Thus, according to (a), whenever possible, Hamiltonian
circuits of the (hydrogen-depleted) molecular graph should
be sought. When a Hamiltonian circuit is possible, as it is
for all cases considered here, rule (b) is irrelevant, and ac-
cording to rule (c¢), among all such circuits, one should look
for those circuits that, whenever possible, are divided
evenly by a bond (a line or an edge of the graph). One of the
atoms (vertices or nodes of the graph) which is an endpoint
of this edge is numbered 1, followed sequentially by the
other vertices on the circuit. Thus, there are four possible
numberings (and IUPAC names) for each edge that divides
evenly the Hamiltonian circuit. According to (d), among all
these numberings, one selects that one which leads to the
smallest set of numbers (on first occurrence, in agreement
with the Chemical Abstracts interpretation of this rule)
corresponding to subsequent bridges; i.e., to the bridge
starting from vertex 2, then from vertex 3, etc.; such
bridges are described by a number specifying how many



Figure 2. (a) Schlegel diagram for dodecahedrane or [20]fullerane 1 ; the contour
of the shaded area is the optimal Hamiltonian circuit for the IUPAC name. (b) The
same with an external Hamiltonian circuit, highlighting the two bridges dividing it

having 12 pentagonal faces and increasing num-
bers of hexagonal faces, starting with zero. These
can be considered both as valence isomers of an-
nulenes and as fully hydrogenated fullerenes;
therefore, they will be called [2n]fulleranes.

Thus, Hamilton’s game, or more particularly
Paquette’s dodecahedrane (I), i.e. [20]fullerane
(CH)gp, leads to the following [TUPAC name (13):

undecacyc%%- 3,7 44,20 15,18 16,16 18,15 ~10,14 12,19 113,17
[9.9.0.0%%.0%" 0% .0%.0%°.0""°.0 .00 3, r‘]_
eicosane

where the sequence of nine superscripted zeroes
in this full name is manifest in Figure 2a, where the
dodecahedral graph is represented by a planar
Schlegel diagram: imagining a face to be transpar-
ent and applying one’s eye to it, one sees the
Schlegel diagram for all remaining faces of the poly-

evenly.

vertices there are in the bridge (for Hamiltonian circuits
all these bridges are bonds with zero atoms. Hence, all
these numbers are zeroes) followed by locants as super-
scripts, separated by a comma, and indicating the num-
bers of the two endpoint vertices for the bridge.

The two halves of the Hamiltonian circuit invelving all
2n vertices and the zero-atom bridge evenly dividing this
circuit precede in square brackets the indication of sub-
sequent bridges, thus: [n — 1. n — 1. 0. 0%~ . . .]. In the full
name one places before this bracket the Greek prefix indi-
cating the cyclomatic number m, and after the bracket the
Greek phrase indicating the number 2n of vertices.

IUPAC Names for Fulleranes

We shall apply the above rules for finding the correct TU-
PAC names for polyhedral polycyclic compounds (CH)g,

e

74
g

\

N4

Figure 3. (a, above) Stereoview of
the Hamiltonian circuit for Buckmin-
sterfullerene. The black dot repre-
sents the carbon atom numbered 2 16 £
via a double bond. The hexagon rep-
resented with an asterisk in the
Schlegel diagram is in the middle of
the back side and is bordered by
three double bonds of the Hamil-
tonian circuit. (b, right) Schlegel dia-
gram for [60]fullerane 2; the contour
of the shaded area is the optimal
Hamiltonian circuit for the IUPAC
name. The asterisk marks the hexa-
gon where the ribbon of condensed :
polygons is branched. 28

hedron. In Figure 2b, the Hamiltonian circuit is

presented as a ring. Both parts of Figure 2 have the
same numbering of vertices corresponding to the require-
ments for IUPAC notation. For polycyclic cubic graphs con-
sisting of few vertices (2n up to 30), one can manually find
Hamiltonian circuits, as indicated for the first time by Eck-
roth (13). One seeks a string of contiguous faces such that
all vertices are included. In Figure 2a this string is indi-
cated by shading. Then one finds the correct vertex num-
bering by assigning provisional numbers in an arbitrary
direction along the contour of the shaded area, and one
looks for bridges connecting vertex i to vertex i + n. If such
a pair exists, then one of the endpoints of this bridge is
numbered i = 1 and all remaining vertices are renumbered
sequentially. In Figure 2 there are two such bridges: 1-11
and 6-16. The symmetry of Figure 2b (with the axes indi-
cated on it) is obvious. All four vertices (1, 6, 11, and 16) are
equivalent. The direction of numbering is determined by
the fact that the alternative possible numbering would
lead to a bridge notation 0%'® which does not
comply with IUPAC rule (d), because the loca-
tion 2,18 is larger than that of Figure 2,
namely 2,9.

Several papers have been published (14-16)
on the TUPAC nomenclature of buckminster-
fullerane (CH)gz, with truncated icosahedral
structure (2), represented in Figure 3. None of
these, however, give the correct solution satis-
fying the four IUPAC rules reproduced above
and in Eckroth’s paper (15). Here we report the
correct name for 2 and for a few other fullera-
nes.

The name indicated by Castells and Ser-
ratosa (14) in 1983 (before Kroto, Smalley,
Curl, Kraetschmer, and Huffman (17-25) had
produced experimental evidence for 2 which
has generated an unprecedented “epidemic”
(26) of publications in the fullerene field) is
based on a Hamiltonian circuit divided equally
by a bridge between atoms numbered 1 and 31
and leading to an expression [29.29.0. .. .]. The
next connection linked the atom numbered 2
with atom 47 (14). In 1986, the same authors
revised this name and produced a somewhat
improved circuit. Their (15) and Eckroth’s (16)
Hamiltonian circuit also leads to the expres-
sion [29.29.0. . . .], but the next connections
link atoms numbered 2 and 3 to atoms 14 and
29, respectively.

A correction is needed for Eckroth’s paper
(16) Castells and Serratosa did not propose a
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name with the unsymmetrical sys- Table 1. Pairs of Connected Bridge Endpoints (in Addition to the Bisecting
tem [30.28.0.0. . .] ; on the contrary, Bridge, 1-31 in Cego).
their name in the 1986 paper is

identical to the name proposgd by Upper and lower numbers indicate zero-atom bridge connections in fulleranes 2-12; parameter p
Eckroth. However, this name is not  denotes the number of pairs of pentagons sharing one edge.and g is the number of pentagon trip-

optimal. lets sharing a common vertex.
We have developed an algorithm
for finding all possible Hamiltonian No. p g Bridge endpoints

circuits in cubic graphs. The algo-
rithm is based on the followingpro- 22 o0 o0 2 3 4 5 6 7 8 9 11 13 15 16 17 19

cedure, carried out either on a 14 12 59 10 58 55 53 21 20 18 30 28 25 24
Schlegel diagram, or on a three-di-

mensional representation of the cu- 22 23 26 27 29 32 33 34 35 36 37 38 39 40 42
bie:graph, such.that at a.cliosen, yer- 52 50 49 47 45 44 60 57 43 56 41 54 51 48 46

tgxone_oft}_leedges1spar_al]elt0a 3 20 2 3 4 5 7 8 10 1 13 14 18 17 19 20
given direction (e. g., vertical for a

Gehlegel dingram). 6 15 12 9 30 27 25 23 21 18 60 46 45 42
Start a path at the chosen vertex

by following the vertical edge, and 22 24 26 28 29 32 34 35 38 40 43 44 47 48 50

turn alternatively left and right at 41 39 37 36 33 58 56 54 53 52 51 49 59 57 55
each new vertex. If one reachesthe 4 3 0 2 3 4 5 7 8 10 11 13 14 16 17 19 20
starting vertex in the last step, the 6 15 12 9 30 27 25 22 21 18 60 57 55 53
path closes to a Hamiltonian circuit.

If not, one backtracks to the pre- 23 24 26 28 29 32 33 35 36 40 42 43 46 47 49
vious step and changes the left/right 52 39 38 37 34 59 45 44 41 51 50 48 58 56 54
direction. To make the algorithm 5 3 o 2 3 4 5 7 8 10 11 13 14 16 17 19 20
less time-consuming, one changes 6 15 12 9 30 27 25 22 21 18 60 46 45 42

the “effective degrees” of vertices in

the vicinity of the path: if the path 23 24 26 28 29 32 34 35 38 40 43 44 47 48 50
goes from vertex i — 1 to vertex i, 41 39 37 36 33 58 56 54 53 52 51 49 59 57 55

and then if one chooses a right-hand
direction to vertex i + l,thei the®'st © 2 & 2 & 4 &5 7 @8 "0 N 18 W4 16 17 19 20
fective degree” of vertex j adjacent 6 15 12 9 30 27 25 22 21 18 60 46 44 42
to vertex i must be decreased by 1,
because the edge from i to j hecomes

23 24 26 28 29 32 34 35 38 40 43 45 47 48 50

forbidden for the Hamiltonian cir- 4 39 37 36 33 58 56 54 53 52 51 49 59 57 55
cuit; this edge is represented bya 7 6 0 2 3 4 5 7 8 9 10 1 14 16 17 19 20
dotted line in Figure 4. The Hamil- 6 29 26 13 60 12 58 18 15 25 23 21 57 54
tonian circuit will include vertex; in

asequence:j—1 ;77+ 1. If the ef- 22 24 27 28 30 32 33 34 35 36 40 42 44 45 46
fective degree reaches 1, it is certain 52 50 49 39 38 37 59 56 43 41 48 47 55 53 51
that the path cannot resultina g 92 02 3 4 5 7 8 9 10 13 14 16 17 18 20
Hamiltonian circuit, and the last 6 30 15 12 11 60 58 55 54 19 29 26 23 53
step is abandoned, going to the

back-tracking procedure. Particular 21 22 24 25 27 28 82 34 35 37 39 42 44 45 51

attention is paid to the vertices ad- 43 41 40 38 36 33 590 57 50 48 47 46 52 49 56
jacent to the initial vertex, because ;

one of them would become thelast ® 11 12 3 4 5 7 8 10 12 13 15 16 17 19 22
on the Hamiltonian circuit. 6 14 11 9 30 23 21 20 18 60 47 44 43 42

From all possible Hamiltonian
circuits, one chooses those with a

24 25 26 27 28 32 34 35 37 39 40 46 48 49 50

29 41 38 36 33 58 57 55 53 52 45 51 59 56 54
10 16 6 2 3 4 5 7 8 10 12 13 16 17 19 22 23

6 21 11 9 30 15 14 20 18 29 26 24 60 40

25 27 28 32 34 35 37 39 41 42 43 44 45 46 47
38 36 33 58 56 54 52 50 59 49 57 48 55 53 51
2 3 4 5 7 8 10 12 14 15 18 20 21 22
6 13 11 9 30 19 17 16 60 46 45 29 44 27

\
|

-
-
-
(o]
(o]

23 24 25 26 28 32 34 36 38 40 41 43 47 49 51
. 42 39 37 35 33 58 56 54 53 52 50 48 59 57 55
fi= 1 12 20 10 2 3 4 5 7 8 10 12 14 15 16 20 22 23
6 13 11 9 30 19 18 17 60 57 21 29 56 28

Figure 4. Six vertices in a cubic graph for
which a Hamiltonian circuit is sought; on

deciding 1o follow the path from i~ 1 to i 24 25 26 27 33 34 36 37 39 40 42 44 46 47 48

and i + 1, one reduces by 1 the effective 54 38 35 32 59 45 43 41 53 51 50 49 58 55 52
degree of vertex j, adjacent to i. Thus, only ‘ )
path j+ 1 tojand j+ 1is left for the Hamil-  #rgr 2 there are 1090 Hamiltonian circuits (16 different), and 14 possible names, from which only one was
tonian circuit. selected.
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Table 2. Pairs of Connected Bridge Endpoints (in Addition to the Bisecting

Bridge, 1-36 in Cvq)

Upper and lower numbers indicate zero-atom bridge connections in fulleranes 13—14.

eral other (CH)gy and (CH)z iso-
mers: for obtaining ITUPAC names,
in all cases the information of Tables
1 and 2 is converted into super-
scripts following zero-atom bridges

No. p g Bridge endpoints :
= in the square brackets after the ex-
18002 3 4 5 7 8 9 11 12 13 14 15 16 17 18 19 20 L i.qcion [29.29.0. . . .] for (CH)g,
6 34 31 10 69 63 61 30 60 58 29 56 27 54 26 23 53 and [34.34.0. .. .] for (CH)qq.
Our result for (CH )4 confirms the
21 22 24 25 28 38 39 41 42 43 44 45 46 47 49 50 64  IUPAC name for buckminsterfuller-
40 37 35 33 32 70 67 52 66 51 48 65 62 59 57 55 68  ene cited in reference 19 as unpub-
14 1 02 3 4 5 7 8 9 11 12 14 15 17 18 21 23 24 25 ﬁge&lgﬁgﬁnge}?g&“ebﬁzhi de;)eSé’
1 u y G
6 34 13 10 69 67 20 19 16 33 30 28 22 66 27 65 55 Ruecker and C. Ruecker using their
computer program POLYCYC which
26 29 31 32 35 37 38 41 43 46 48 51 53 56 58 61 63 isapp]icab]e also to systems without
45 44 42 40 39 60 50 49 47 54 52 59 57 64 62 70 68 Hamiltonian circuits (27).

2 For 13 there are 2790 Hamiltonian circuits (144 different) and 198 possible names, from which only one was

selected.

Table 3. Numbers of the 1812 Cgp-cage isomers,
as Function of Parameters p and gq.

qg 0 1 2 3 4 5 6 7 8 9 10
p
0 1
1
2 1
3 3
4 17
5 81 b5
6 215 39
7 210 147 6
8 145 214 54
9 23 132 31 M
10 7 28 16 42 4
11 1 31 54 11
12 1 6 16 25 2
13 2 10 7
14 3 5] 2
15 2
16 1
17
18 1
19
20 1

bridge that divides equally the circuit, and then one exam-
ines the connections of vertices adjacent to the two vertices
that form the bridge dividing equally the circuit (one of
these two atoms receives number 1): the smallest numbers
should appear as bridges for the atom numbered 2, then
for atom numbered 3, etc.

The complete correct IUPAC name for 2 using the A. von
Baeyer nomenclature system adapted to polycyclic graphs
is :

.02,14.03.12‘04,59.0

hentriacontacyclo[29.29.0.0%7°.0777.0°".0...... lhexacontane.

Tables 1 and 2 present in full in a different form the
same information, by providing on two successive lines the
connections (bridges) between atoms starting with atom
numbered 2; the connections appear as superscripts for the
zero-atom bridges in the IUPAC name. In the same tables
and with the same format one sees IUPAC names for sev-

In Table 1 the 11 particular 60-
atom fulleranes described are but a
small fraction of the 1812 possible
ones (not distinguishing mirror im-
ages). The fulleranes of Tables 1 and 2 are identified there
by what usually are incomplete labels (28-31) namely: p,
the number of abuttments between pairs of pentagons; and
g, the number of vertices where three pentagons abutt. All
possible 60-atom fulleranes with the given p, g-values ap-
pear in Table 1 with one exception, namely 7 with p = 6, ¢
= 0 (among all such isomers, 7 is the unique one with six
pairs of condensed pentagons arranged octahedrally). Sta-
bilities of (CH)g, cage isomers are expected to decrease in
the order: 2> 3> 4> 5> 6. . . and for (CH);, cage isomers in
the order: 13 >14. The numbers of (CH)g isomers for other
p, q values are given in Table 3, which in fact corrects (30)
a table earlier given in reference (29).

The IUPAC name for the (experimentally relevant)
unique (CH)7y cage with no abutting (condensed) penta-
gons is (see Table 2):

hexatriacontacyclo[34.34.0.0%¢.0%% 0*3L 0. |-
heptacontane

One can also see in Tables 1 and 2 the numbers of all
Hamiltonian circuits, and of possible names from which
the optimal one (the only one included in these tables) was
selected in agreement with IUPAC rules.

It should be noted that the Hamiltonian circuits leading
to the correct IUPAC names define on the surface of all
fullerane cages with 2n > 60 (or on their Schlegel dia-
grams) arrays of condensed polygons which form branched
(catacondensed) ribbons, unlike the linear ribbons on
which the previously proposed names were based (14-16).
Evidently, branching can only occur at a face which has at
least six vertices. Therefore, we conjecture that this fea-
ture is a general one. Notably for every fullerane graph we
have tried (out of hundreds), we have always found Hamil-
tonian circuits. Among the two dozens examined in more
detail we have always found one with a circuit which is
equally divided by a bridge bond. Further, the occurrence
of Hamiltonian circuits extends to some fulleranes for
which the “spiral labelling” of Manolopulos and Fowler
(32, 33) does not apply; this is indicated in Figure 5 where
a Hamiltonian circuit (not optimized for TUPAC notation)
is shown for their example of a “spiralless” Cag, fullerane.

Hamiltonian circuits differ markedly for Platonic solids
(regular polyhedra, namely tetrahedrane, cubane, dodeca-
hedrane) and Archimedean solids (semiregular polyhedra
such as fulleranes (16), among others), in that these cir-
cuits are perimeters of linearly condensed polygons only
for Platonic soliods. For Archimedean solids, Hamiltonian
circuits can be perimeters of branched “ribbons” of con-
densed polygons. This difference arises because such
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Figure 5. Schlegel diagram with a Hamiltonian circuit (contour of
shaded area) for the “spiralless” Caqq fullerene.

branching can occur only in the presence of hexagons,
which do not exist in the three Platonic solids correspond-
ing to valence isomers of annulenes. In a cage containing
at least one hexagon and no triangles, a large number of
Hamiltonian circuits arises from such “branched” perime-
ters. Strict adherence to TUPAC rule A-32.31 allows for se-
lection of the correct IUPAC name. Thus, the truncated oc-
tahedron (another Archimedean solid, corresponding to
(CH)s4) has the ITUPAC name:

tridecacyelo[12.12.0.0%7.0%21 421 0520 6.9 813 (10.19-

011.18.012.13. 016.23. 0] "22'Itetracnsane.

A further remark concerns the usefulness of IUPAC
names for fulleranes. While we consider them to be too
cumbersome and to include some redundancies, namely
the numbers of vertices and rings (34), they do provide a
unique numbering for all carbon atoms. In particular, for
classroom instruction, manually generating the IUPAC
names seems to be feasible for systems such as cubane or
adamantane, and a complexity no larger than that of do-
decahedrane. We have explored (35) several graph-theo-
retical and quantum-chemical invariants that will be pre-
sented separately, and which may provide a better basis
for naming fullerenes.
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In addition to being useful for IUPAC nomenclature,
Hamiltonian circuits have been proposed (36, 37) as a basis
for coding graphs with vertices of degree three (cubic
graphs). Any graph can be converted into a cubic graph by
an appropriate algorithm. Furthermore, whenever a graph
with an even number of vertices posseses a Hamiltonian
circuit, it also has at least two Kekulé structures derived
from alternating single and double bonds along that cir-
cuit.
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