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Historical Information (1-9) 

Genius has its pitfalls, and may not always be a blessing, 
as  proved in music by Mozart and in mathematics by Ga- 
lois. Another genius, William Rowan Hamilton (1805- 
1865, see Fig. 11, was born in Dublin where he lived all his 
life. He was, like Mozart, a child prodigy. At age three he 
was a superior reader of English and was considerably ad- 
vanced in arithmetic. At four he was a good geographer. At 
five he read and translated Latin, Greek, and Hebrew. 
When he reached the age of 13 be spoke and read 13 for- 
eign languages (including Italian, French, Persian, Arabic, 
and Sanskrit). He never attended school before going to 
the university, but  h e  received his training privately, 
mainly from an uncle because both his parents had died 
when he was a child. He entered Trinity College, Dublin, 
and he carried off all the available prizes. His fame led to 
the unprecedented appointment of Hamilton as  Royal As- 
tronomer of Ireland, Director of the Dunsink Observatory, 
and Professor of Astronomy in an open competition in 1827 
when he was still an undergraduate. His superabundant 
energy erupted in many directions including poetry. He be- 
friended Coleridge and Wordsworth. Wordsworth per- 
suaded Hamilton to concentrate on science. Wordsworth 
also said that the only two men who had ever given him a 
feeling of inferiority were Coleridge and Hamilton. 

At the age of 23, Hamilton published "A Theory of Sys- 
tems of Rays" that laid the mathematical structure of op- 
tics in the manner Lagrange had done for mechanics. 
Hamilton's treatment predicted surprising qualitatively 
new features of conical refraction that were subsequently 
found by Humphrey Lloyd in certain crystals. This tri- 
umph led to a knighthood for Hamilton when he was 30, 
and to his election in the Royal Irish Academy when he was 
27; he served as  its president between 1837 and 1845. In  
Ireland at  that time. being knighted bv the British Crown 
did not endcar s ir  willian;~o&n ~ a m i l i o n  10 r h r  general 
public and contributed to his incrcasinr! iwlatron. - 

In  1833 he married a sickly woman who soon became 
semi-invalid and neglected the household. 

Hamilton introduced his ideas (which worked so well in 
optics) into mechanics by applying the principle of least 
action in two papers published in 1834 and 1935. For con- 
servative systems (where the components of force are de- 
rivable from a potential that is a function of position only), 
Hamilton's principle reduces to Lagrange's, but unlike the 
latter principle, the former also holds for nonconservative 
systems. Jacobi described Hamilton's differential equa- 
tions as  "canonical". 

'Permanent address: Department of Organic Chemistry. Polyiech- 
nic University, Bucharest, Roumania. 

Figure 1. W. R.  Hamilton as portrayed by a contemporary artist with 
his mace of office as President of the royal Academy or Ireland. 

After the formulation of quantum mechanics, Hamilton's 
function H has assumed a central role when Schroedinger 
formulated his stationary state equation expressable as  

(here 'I' is the system's wave function and eigenvalues E 
correspond to allowed energies). Further, in another fun- 
damental formulation of quantum mechanics via Feyn- 
man path integrals, the variable integrand in Hamilton's 
variational principle becomes the "phase" along each pos- 
sible path. Indeed, this particular result might not be 
wholly unexpected because Hamilton was seeking to de- 
scribe both optical and mechanical ( i.e., wave and particle) 
phenomena within a unified variational principle. 

Hamilton motivated the modern vectorial formulation of 
classical mechanics with his axiomatic introduction of the 
first non-commutative algebra, based on quaternions, 
which he believed to be his foremost contribution to sci- 
ence. In  trying to approach algebra logically, he modeled 
complex numbers by pairs of ordered numbers, which can 
represent rotation in a two-dimensional space, and from 
here he went on trying to represent rotations in a three-di- 
mensional space by triplets. For years his efforts remained 
unsuccessful. Frequently, a t  the breakfast table, his sons 
asked him: "Daddy, can you multiply triplets?" to which 
Hamilton replied ruefully: "I can add and subtract triplets, 
but I cannot multiply them". And then, one day in October 
1843, as  he was walking from the Observatory to Dublin 
for a meeting of the Academy, the basis for this quaternion 
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algebra came to him in  a flash: three "imaginary" units i, j, 
k, were needed for quaternions q: 

q = a i + b j + c k + d  

where a, b, c, d are ordinary real numbers. He was so im- 
pressed by his idea that he cut with a knife in the stone of 
Brougham Bridge the generative formulas: 

i 2 = j 2  = k 2  =$=-I 

Following Hamilton's publication, other types of "hyper- 
complex" algebras were announced (though Hamilton's 
quaternions remain a unique example of a n  associative al- 
gebra with no divisors of zero). Hamilton believed that  
quaternions were involved in a fundamental incorporation 
of time into theoretical science, and amusingly the four-di- 
mensional quaternion algebra later turned out to be inti- 
matelv related to the four-dimensional space-time frame of 
~ a x i e l l ' s  electromagnetism and of ~ i n k e i n ' s  special the- 
orv of relativitv. Also hmercom~lex aleebras were the first 
fo;efront area "of resea;Eh focused on cy the then fledgling 
American mathematical communitv. 

In  the last days of his life, ~ a m i i t o n  was elected as the 
first foreim member of the National Academv of Sciences 
of the ~ n l % e d  States (newly founded during tLe Civil War). 

The c h a ~ t e r  in Bell's classic "Men of Mathematics" (8) 
devoted t d ~ a m i l t o n  starts: "William Rowan Hamilton is 
bv long odds the greatest man of science that Ireland has . - 
produced. But &is chapter seems to be rather arguably 
entitled "An Irish 'IYagedv". The tragedy is  claimed to be 
due to Hamilton's noiideil mamag;, his obsession with 
quaternions, and his indulgence with drinking (although 
a s  pointed out by Professor Lanczos (9), "his ocassional 
drinking bouts are something that we would hardly call a 
'tragedy'here in  Ireland"). Perhaps some of these aspects 
are yet another parallel with Mozart. 

Hamilton's scientific coutributions (which he once de- 
scribed as his "real poetry") are so fundamental that one 
might anticipate some of them to have importance not only 
in physics and mathematics, but also in chemistry and 
other fields. 

Hamiltonian Circuits 
By association with his nonronimutari\.e nlgt4,r:1. Ilam- 

ilton invrnrcd and puhlishc~d in lASfi"tht! i c o s i . ~ ~ ~  cdculus". 
which invulvt..; paths on thc mxph ~ , f  the r~mIa~.dodecahe-  
dron. He then i s e d  the graphical interpretation as the ba- 
sis of a puzzle which he called "The Icosian Game", and 
exibited i t  a t  the meeting of the British Association in Dub- 
lin in 1857. He sold the idea to a whoesale dealer in games 
for £25, but this game did not prove to be a commercial 
success; Rubik's cube seems more appealing. 

The object of the game was to find paths and circuits on 
the dodecahedra1 graph, satisfying certain conditions. One 
version of Hamilton's game called "The Traveller's Dodeca- 
hedron" or "A Voyage Round the World" involved a solid 
regular dodecahedron whose vertices had pegs labelled 
with names of 20 world cities. The aim of the game was to 
loop a thread around these pegs to indicate a circuit pass- 
ing once through each city (10). 

Such circuits are now called "Hamiltonian circuits", and 
occupy a prominent place in  modern graph theory. These 
circuits lead to many interesting problems, some of which 
are not yet solved. For instance, to establish whether a 
riven a a p h  is Hamiltonian ( i.e.. whether i t  has a Hamil- - - .  
tonian circuit) is generally non-trivial. 

Interestin~lv. i t  amears  that the general ~ rob lem of such 
circuits in graphs .cad been puhlGhed inbependently in 
1856 (before Hamilton's paper had appeared) by a n  ama- 
teur mathematician, Thomas Penyngton Kirkman, who 
for over 50 years (1840-1892) was rector of a small parish 

in  Lancashire but owing to his mathematical contributions 
was elected a Fellow of the Royal Society in  1857 (10). 
However, Hamilton's fame (and possibly his game) led to 
the general acceptance of the term "Hamiltonian circuit". 

~ F c o u r s e  chemical structural formulas can be viewed as 
realizations of mathematical graphs, so that i t  should per- 
haps not be surprising that ~ a m i l t o n i a n  circuits might 
also play a n  important role in chemistry. 

IUPAC Names for Polycyclic Compounds 
Adolf von Baeyer (1835-1917, Nobel Prize for Chemistry 

in  1905) was a PhD student of Kekuli, and taught organic 
chemistry a t  the University of Berlin and Munich (Ger- 
many). In the latter position he succeeded Liebig and re- 
mained there from 1875 till 1913. He devised svntheses for 
uric acid, isatin, indigo, and triarylmethane dyes. In addi- 
tion to his exoerimental contributions to the founding and 
developmentof German dyestuff industry (from which he 
refused anv ~rof i t ) .  Baever developed theoretical views on 
steric strainin cyclic compounds and on aromaticity. From 
his investigations of cycloalkanes and polycyclic deriva- 
tives, he devised nomenclature rules that hold to this day 
(and, as we shall see, involve Hamiltonian circuits). 

~ d o l f  von Baeyer proposed a system for naming bicyclic 
compounds, which later had been generalized to polycyclic 
systems, and has been adopted by the IUPAC Committee 
for Nomenclature. Rule A-32.31 runs a s  follows (11). 

IUPAC Rule A-32-31: The von Baeyer System 

When there is a choice, the following criteria are consid- 
ered in  turn until a decision is made. 

(a) The main ringshall contain as many carbon atoms as posi- 
ble, two of which must serve as bridgeheads for the main 
bridge. 

(h) The main bridge shall be as large as possible. 
( c )  The main ring shall be divided as symetrically as possible 

by the main bridge. 
(dl The superscripts locating the other bridges shall be as 

small as possible. 

We shall apply this rule to naming polycyclic Hamil- 
tonian graphs consisting of u = 2n vertices, each of which 
is the meeting place for three edges ( i.e., has degree 3). 
Such graphs are called cubic graphs. Molecular graphs of 
fulleranes (CH)2,, and of all other valence isomers of an- 
nulenes (12) are  reoresented bv cubic eraohs. In  such - .  
graphs, there are e = 3n edges, and the so-called cyclomatic 
number is m = e - u + 1 = n + 1. This number indicates how 
many edges one needs to remove in  order to obtain a n  acy- 
clic but still connected maph. The fullerane e r a ~ h s  studied 
here have the further Teakre that they can be embedded 
on the surface of a sphere showing only five- and six-mem- 
hered rines. - -- - ~~ ---- -- 

Thus, according to (a), whenever possible, Hamiltonian 
circuits of the (hybrogen-depleted) molecular graph should 
be sought. When a Hamiltonian circuit is possible, as i t  is 
for all eases considered here, rule (h) is irrelevant, and ac- 
cording to rule (c), among all such circuits, one should look 
for those circuits that ,  whenever possible, are  divided 
evenly by a bond (a line or a n  edge of the graph). One of the 
atoms (vertices or nodes of the a a n h )  which is an e n d ~ o i n t  
of th is  edge is numbered 1, fo?lo&ed sequentially b i  the 
other vertices on the circuit. Thus. there are four ~ossible  
nuu~lw~ings  ! iud  II!PAC niim(~i f01. wch dgt: that divides 
evenlv the Hamlltonian circuit. ;\ccord~rie t u  d . dmme all 
these"nnmberiugs, one selects that one which lkads to the  
smallest set of numbers (on first occurrence. in  aereement 
with the Chemical Abstracts interpretation of this rule) 
corres~ondine to subseauent bridges: i.e., to the bridge 
start ing from vertex 2; then from "ertex 3,  etc.; such 
bridges are described by a number specifying how many 
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having 12 pentagonal faces and increasing num- 
bers of hexagonal faces, starting with zero. These 
can he considered both as  valence isomers of an- 
nulenes and a s  fully hydrogenated fullerenes; 
therefore, they will be called [2nlfulleranes. 

5 Thus, Hamilton's game, or more particularly 
Paquettek dodecahednne (11, i . e  I2OIfullerane 
(CH)20, leads to the following IUPAC name (13): 

16 undecacyclo- 
19,~,o,o2.9,03,7,04,20,05,1S,06,16,0S8L55010,141012219,013,17 I- 

eieasane 

where the sequence of nine superscripted zeroes 
20 in this full name is manifest in Figure 2a, where the 

dodecahedra1 graph is represented by a planar 
Figure 2. (a) Schlegel diagram for dodecahedrane or [20]fullerane 1 ;the contour Schlegel diagram: imagining a face to be transpar- 
of the shaded area is the optimal Hamiltonian circuit for the IUPAC name. (b) The en t  and applying one's eye to i t ,  one sees the 
same with an external Hamiltonian circuit, highlighting the two bridges dividing it Schlegel diagram for all remaining faces of the poly- 
evenly. hedron. In  Figure 2h, the Hamiltonian circuit is 

presented as  a ring. Both parts of Figure 2 have the 
vertices there are in the bridge (for Hamiltonian circuits same numbering of vertices corresponding to the require- 
all these bridges are bonds with zero atoms. Hence, all ments for IUPAC notation. For polycyclic cubic graphs con- 
these numbers are zeroes) followed by locants as  super- sisting of few vertices (2n up to 301, one can manually find 
scripts, separated by a comma, and indicating the num- Hamiltonian circuits, as  indicated for the first time by Eck- 
bers of the two endpoint vertices for the bridge. roth (13). One seeks a string of contiguous faces such that 

~h~ two halves of the Hamiltonian circuit involving all all vertices are included. In  Figure 2a this string is indi- 
2n vertices and the zero-atom bridge evenly dividing this cated by shading. Then one finds the correct vertex num- 
circuit precede in square brackets the indication of sub- bering by assigning provisional numbers in an arbitrary 
sequent bridges, thus: [n - 1. n - 1.0. 02..-. . . .I. ~n the full direction along the contour of the shaded area, and one 
name one places before this bracket the Greek prefix in&- looks for bridges connecting vertex i to vertex i + n. If such 
cating the cyclomatic number m, and after the bracket the a pair exists, then one of the endpoints of this bridge is 
Greek phrase indicating the number 2n of vertices. numbered i = 1 and all remaining vertices are renumbered 

sequentially. In  Figure 2 there are two such hridges: 1-11 

IUPAC Names for Fulleranes and 6-16. The symmetry of Figure 2h (with the axes indi- 
cated on it) is obvious. All four vertices (1,6,11, and 16) are 

We shall apply the above rules for finding the correct IU- equivalent. The direction of numbering is determined by 
PAC names for polyhedral polycyclic compounds (CHh, the fact that the alternative possible numbering would 

lead to a bridge notation 02," which does not 

Figure 3. (a, above) Stereoview of 
the Hamiltonian circuit for Buckmin- 
sterfullerene. The black dot repre- . 
sents the carbon atom numbered 2 
via a double bond. The hexagon rep- 
resented with an asterisi in the 
Schleoel diaaram is in the middle of 
the back siie and is bordered bv \--yy: 
lnree dodole oonas of the ham I -  
ton an c rc. t (o, r ght) Scnlege o a- 
gram for [601f. erane 2. the conto~r 
of the shaded area is the optimal 
Hamiltonian circuit for the IUPAC 
name. The asterisk marks the hexa- \ /i;i;;xi:,: 9 ' ' 

aon where the ribbon of condensed 
ijolygons is branched. -28 

comply with IUPAC rule (dl, because the loca- 
tion 2,18 i s  larger than  t ha t  of Figure 2, 
namely 2,9. 

Several papers have been published (14-16) 
on the IUPAC nomenclature of huckminster- 
fullerane (CHIGo with truncated icosahedral 
structure (21, represented in Figure 3. None of 
these, however, give the correct solution satis- 
fying the four IUPAC rules reproduced above 
and in Eckroth's paper (15). Here we report the 
correct name for 2 and for a few other fullera- 
nes. 

The name indicated by Castells and Ser- 
ratosa (14) in 1983 (before Kroto, Smalley, 
Curl, Kraetschmer, and Huffman (17-25) had 
produced experimental evidence for 2 which 
has generated a n  unprecedented "epidemic" 
(26) of nnblications in the fullerene field) is . . 
based on a Hamiltonian circuit divided equally 
by a bridge between atoms numbered 1 and 31 
and leadine to an ex~ression 129.29.0. . . .1. The 
next conne>tion linked the atom numbered 2 
with atom 47 (14). In 1986, the same authors 
revised this name and produced a somewhat 
improved circuit. Their (15) and Eckroth's (16) 
Hamiltonian circuit also leads to the expres- 
sion [29.29.0. . . .I, but the next connections 
link atoms numbered 2 and 3 to atoms 14 and 
29, respectively. 

A correction is needed for Eckroth's paper 
(16) Castells and Serratosa did not propose a 
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name with the unsymmetrical sys- 
tem [30.28.0.0. . .I ; on the contrary, 
their name in the 1986 paper is 
identical to the name proposed by 
Eckroth. However, this name is not 
optimal. 

We have developed an algorithm 
for finding all possible Hamiltonian 
circuits in cubic graphs. The algo- 
rithm is based on the following pro- 
cedure, carried out  e i ther  on a 
Schlegel diagram, or on a three-di- 
mensional representation of the cu- 
bic graph, such that a t  a chosen ver- 
tex one of the edges is parallel to a 
given direction (e. g., vertical for a 
Schleeel diaeram). 

Table 1. Pairs of Connected Bridge Endpoints (in Addition to the Bisecting 
Bridge, 1-31 in C60). 

Upper and lower numbers indicate zero-atom bridge connections in fulleranes 2-12; parameter p 
denotes the number of pairs of pentagons sharing one edge.and q is the number of pentagon trip- 
lets sharing a common vertex. 

No. P q Bridge endpoints 

~ t a &  a pa'ih a t  the chosen vertex 
by following the vertical edge, and 22 24 26 28 29 32 34 35 38 40 43 44 47 48 50 

turn alternatively left and right a t  41 .39 37 36 33 58 56 54 53 52 51 49 59 57 55 

each newvertex. If one reaches the 4 3 0 2 3 4 5 7 8 10 11  13 14 16 17 19 20 
starting vertex in the last step, the 6 15 12 9 30 27 25 22 21 18 60 57 55 53 
path closes to a Hamiltonian circuit. 
If not, one backtracks to the pre- 23 24 26 28 29 32 33 35 36 40 42 43 46 47 49 
vious step and changes the leftlright 52 39 38 37 34 59 45 44 41 51 50 48 58 56 54 
direction. To make the algorithm 5 3 0 2 3 4 5 7 8 10 11  13 14 16 17 19 20 
less time-consuming, one changes 6 15 12 9 30 27 25 22 21 18 60 46 45 42 
the "effective demees" of vertices in 
the vicinity of tce path: if the path 73 74 26 PR 29 32 34 3s 3R 40 43 44 47 4R 50 -. - . -. -. -. . - . . . . . . . . .. . .. 
goes from vertex i - 1 to vertex i, 41 39 37 36 33 58 56 54 53 52 51 49 59 57 55 
and then if one chooses a right-hand 
direction to vertex i + 1, then the "ef- 6 3 0 2 3 4 5 7 8 10 11 13 14 16 17 19 20 

fective degree" of vertex j adjacent 6 15 12 9 30 27 25 22 21 18 60 46 44 42 

to vertex i must be decreased by 1, 
because the edge from i to j becomes 23 24 26 28 29 32 34 35 38 40 43 45 47 48 50 

forbidden for the Hamiltonian cir- 41 39 37 36 33 58 56 54 53 52 51 49 59 57 55 
cuit;thisedgeisrepresentedbya 7 6 0 2 3 4 5 7 8 9 10 11  14 16 17 19 20 
dotted line in Figure 4. The Hamil- 6 29 26 13 60 12 58 18 15 25 23 21 57 54 
tonian circuit will include vertex j in 
a sequence: j - 1 ; j ;  j + 1. If the ef- 22 24 27 28 30 32 33 34 35 36 40 42 44 45 46 
fective degree reaches 1, it is certain 52 50 49 39 38 37 59 56 43 41 48 47 55 53 51 

t h a t t h e ~ a t h c a n n o t r e s u l t i n a  8 I 0 2  3 4 5 7 8 9 10 13 14 16 17 18 20 
Hamiltonian circuit, and the last 6 30 15 12 11 60 58 55 54 19 29 26 23 53 
step is abandoned, going to the  
back-tracking procedure. Particular 21 22 24 25 27 28 32 34 35 37 39 42 44 45 51 
attention is paid to the vertices ad- 
jacent to the initial vertex, because 

43 41 40 38 36 33 59 57 50 48 47 46 52 49 56 

one of them would become the last 9 11  1 2  3 4 5 7 8 10 12 13 15 16 17 19 22 

on the Hamiltonian circuit. 6 14 11  9 30 23'21 20 18 60 47 44 43 42 
From all  possible Hamiltonian 

circuits, one chooses those with a 24 25 26 27 28 32 34 35 37 39 40 46 48 49 50 

29 41 38 36 33 58 57 55 53 52 45 51 59 56 54 
10 16 6 2  3 4 5 7 8 10 12 13 16 17 19 22 23 

i+. 1 1 6 21 11  9 30 15 14 20 18 29 26 24 60 40 

I I 6 13 11 9 30 19 18 17 60 57 21 29 56 28 
Figure 4. Six vertices in a cubic graph for 
which a Hamiltonian circuit is sought: on 
deciding to follow the path from i -  1 to i 24 25 26 27 33 34 36 37 39 40 42 44 46 47 48 

and i + 1, one reduces by 1 the effective 54 38 35 32 59 45 43 41 53 51 50 49 58 55 52 
dearee of vertex i ,  adiacent to i. Thus. onlv 
paihj+ 1 to1 and]+ i is left forthe Hamit- T o r  2 there are 1090 Hamiltonian circuits (16 dinerent), and 14 possible names, from which only one was 
tonian circuit. selected. 
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Table 2. Pairs of Connected Bridge Endpoints (in Addition to the Bisecting 
Bridge, 1-36 in C70) 

Upper and lower numbers indicate zero-atom bridge connections in fulleranes 13-14. 

NO. D 0 Bridge endpoints 

45 44 42 40 39 60 50 49 47 54 52 59 57 64 62 70 68 
" For 13 there are 2790 Hamiltonian circuits (144 different) and 198 possible names, from which only one was 

selected. 

era1 other (CHI60 and (CHI7o iso- 
mers: for obtaining IUPAC names, 
in all cases the information of Tables 
1 and 2 i s  converted into super- 
scripts following zero-atom bridges 
in the square brackets after the ex- 
pression 129.29.0. . . .I for (CHIso, 
and L34.34.0. . . .I for (CH)70. 

Our result for (CH)60 confirms the 
IUPAC name for buckminsterfuller- 
ene cited in reference 19 as  unpub- 
lished work being due to P. Roese, 
and the name first published by G. 
Ruecker and C. Ruecker using their 
computer program POLYCYC which 
is applicable also to systems without 
Hamiltonian circuits (27). 

In  Table 1 the 11 particular 60- 
atom fulleranes described are but a 
small fraction of the 1812 possible 

Table 3. Numbers of the 1812 Cso-cage isomers, 
a s  Function of Parameters p and q. 

q O 1 2 3 4 5 6 7 8 9 1 0  

bridge that divides equally the circuit, and then one exam- 
ines the connections of vertices adjacent to the two vertices 
that form the bridge dividing equally the circuit (one of 
these two atoms receives number 1): the smallest numbers 
should appear as  bridges for the atom numbered 2, then 
for atom numbered 3, etc. 

The complete correct IUPAC name for 2 using the A. von 
Baeyer nomenclature system adapted to polycyclic graphs 
is : 

Tables 1 and 2 present in full in a different form the 
same information, by providing on two successive lines the 
connections (bridges) between atoms starting with atom 
numbered 2; the connections appear as superscripts for the 
zero-atom bridges in the IUPAC name. In the same tables 
and with the same format one sees IUPAC names for sev- 

ones (not distinguishing mirror im- 
ages). The fulleranes of Tables 1 and 2 are identified there 
by what usually are incomplete labels (2831)  namely: p,  
the number of abuttments between pairs of pentagons; and 
q,  the number of vertices where three pentagons abutt. All 
possible 60-atom fulleranes with the givenp, q-values ap- 
pear in Table 1 with one exception, namely 7 withp = 6,,q 
= 0 (among all such isomers, 7 is the unique one with sur 
pairs of condensed pentagons arranged octahedrally). Sta- 
bilities of (CHIGo cage isomers are expected to decrease in 
the order: 2> 3> 4> 5> 6. . . and for ( C H h  cage isomers in 
the order: 13 >14. The numbers of (CH)60isomers for other 
p, q values are given in Table 3, which in fact corrects (30) 
a table earlier given in reference (29). 

The IUPAC name for the (experimentally relevant) 
unique (CHIm cage with no abutting (condensed) penta- 
gons is (see Table 2): 

hexatria~onta~clal34.34.0.0~~~.0~~~~.0~~~~.0 ... 1- 
heptaeantane 

One can also see in Tables 1 and 2 the numbers of all 
Hamiltonian circuits. and of possible names from which 
tht, optimal one (the only one i;icludcd in these t.iblc.i, was 
irlectcd in amcement with IVPAC' rules. - 

I t  should be noted that the Hamiltonian circuits leading 
to the correct IUPAC names define on the surface of all 
fullerane cages with 2n Z 60 (or on their Schlegel dia- 
grams) arrays of condensed polygons which form branched 
(catacondensed) ribbons. unlike the linear ribbons on 
I\ hich the pre\ iou31y proposed names were based 114-I t j t  
Evidentl!, branching can onlv occur at a face whwh has at 
least six'vertices. Therefore; we conjecture that this fea- 
ture is a general one. Notably for every fullerane graph we 
have tried (out of hundreds), we have always found Hamil- 
tonian circuits. Among the two dozens examined in more 
detail we have always found one with a circuit which is 
equally divided by a bridge bond. Further, the occurrence 
of Hamiltonian circuits extends to some fulleranes for 
which the "spiral labelling" of Manolopulos and Fowler 
(32,331 does not apply; this is indicated in Figure 5 where 
a Hamiltonian circuit (not optimized for IUPAC notation) 
is shown for their example of a "spiralless" C3~ofullerane. 

Hamiltonian circuits differ markedly for Platonic solids 
(regular polyhedra, namely tetrahedrane, cubane, dodeca- 
hedrane) and Archimedean solids (semiregular polyhedra 
such as fulleranes (161, among others), in that these cir- 
cuits are perimeters of linearly condensed polygons only 
for Platonic soliods. For Archimedean solids, Hamiltonian 
circuits can be perimeters of branched "ribbons" of con- 
densed polygons. This difference arises because such 
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In  addition to being useful for IUPAC nomenclature, 
Hamiltonian circuits have been proposed (36,371as a basis 
for coding graphs with vertices of degree three (cubic 

Figure 5. Schlegel diagram with a Hamiltonian circuit (contour of 
shaded area) for the "spirailes<' C380fuiierene. 

branching can occur only in  the  presence of hexagons, 
which do not exist in  the three Platonic solids correspond- 
ing to valence isomers of annulenes. In a cage containing 
a t  least one hexagon and no triangles, a large number of 
Hamiltonian circuits arises from such "branched" perime- 
ters. Strict adherence to IUPAC rule A-32.31 allows for se- 
lection of the correct IUPAC name. Thus, the truncated oc- 
tahedron (another Archimedean solid, corresponding to 

has the IUPAC name: 

A further remark concerns the  usefulness of IUPAC 
names for fulleranes. While we consider them to be too 
cumbersome and to include some redundancies, namely 
the numbers of vertices and rings (341, they do provide a 
unique numbering for all carbon atoms. In particular, for 
classroom instruction, manually generating the IUPAC 
names seems to be feasible for systems such a s  cubane or 
adamantaue, and a complexity no larger than that of do- 
decahedrane. We have explored (35) several graph-theo- 
retical and quantum-chemical invariants that will be pre- 
sented separately, and which may provide a better basis 
for naming fullerenes. 

graphs). Any graph can be converted into a cubic graph by 
a n  appropriate algorithm. Furthermore, whenever a graph 
with a n  even number of vertices nosseses a Hamiltonian 
circuit, i t  also has a t  least two Kekule structures derived 
from alternating single and double bonds along that cir- 
cuit. 
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