MATH 314 Fall 2024 - Class Notes

10/22/2024

Scribe: Kyle Merkins

Summary: Euler's Theorem and introduction to RSA encryption.

Euler's Theorem:

Similar to Fermat's Theorem, but improved for composites.

If $GCD(a, n) = 1$, meaning a and n are coprime, then $a^{\varphi(n)} \equiv 1 \pmod{n}$

- a and n must be coprime
- *n* cannot be divisible by the square of a prime (square free).

Factor the resulting $a^{\varphi(n)} \equiv 1 \pmod{n}$ from the original a^e to simplify large exponents.

Euler's Theorem Example:

Compute $11^{85} \pmod{21}$

- 1. Check if a and n are coprime. $GCD(11,21) = 1$, 11 is prime and 11 does not factor into 21.
- 2. Compute $\varphi(21)$ $\varphi(21) = \varphi(3) \cdot \varphi(7) = (7^1 - 7^0) \cdot (3^1 - 3^0) = 6 \cdot 2 = 12$ Using Euler's Theorem, we know that $11^{12} \equiv 1 \pmod{21}$
- 3. Factor 11^{12} out of the exponent of 11^{85} (mod 21). $11^{85} = 11^{84} \cdot 11^1$ $= 11^{(12)7} \cdot 11^{1}$

Since we know that $11^{12} = 1$, through Euler's Theorem, we can write this as: $1^7 \cdot 11^1 \pmod{21}$, which is the final answer of 11 (mod 21)

RSA Encryption: A public key Cryptography

Involves two keys

- A public key that everyone knows and has access to.
- A private decryption key that only Alice knows.

Anyone can send Alice a message, but not everyone has the information required to decrypt.

RSA Setup:

- Alice chooses two large prime numbers p and q , each with 120 or more digits and hard to guess.
- Alice computes $n = p \cdot q$, and n is made publicly known.
- Alice then picks an encryption exponent e where $gcd(e, \varphi(n)) = 1$.
- Alic's public key is (e,n). Anyone can send Alice a message with the encryption function $E(x) \equiv x^e \pmod{n}$
- To decrypt messages, Alice needs decryption exponent d.

Using Euler's Theorem, $d = e^{-1} \pmod{\varphi(n)}$.

Since Alice knows p and q, she can compute $\varphi(n) = (p-1)(q-1)$ and easily compute d.

• Alice's decryption function is $D(y) = y^d \pmod{(n)}$.

From Eve's perspective, e and n are known, but without p and q Eve can not easily compute d for the decryption method. Factoring a huge number like n to find p and q is difficult with no known fast method.

RSA Example:

RSA using variables $p = 11, q = 7, n = 11 \cdot 7 = 77, \text{ and } e = 17.$

- 1. The encryption method $E(x) \equiv x^e \pmod{n}$ is $E(x) \equiv x^{17} \pmod{77}$
- 2. compute $d = 17^{-1} \pmod{\varphi(77)}$.

$$
\varphi(77) = (11 - 1)(7 - 1) = 60
$$

Use Euclid's extended algorithm to compute: $d = 17^{-1} \pmod{60}$.

$$
60 = 3(17) + 9
$$

\n
$$
17 = 1(9) + 8
$$

\n
$$
9 = 1(8) + 1
$$

\n
$$
1 = 9 - 1(18)
$$

\n
$$
8 = 17 - 1(9)
$$

\n
$$
9 = 60 - 3(17)
$$

Substitute, distribute, simplify

 $1 = 9 - 1(17 - 9)$ $1 = 2(9) - 17$ $1 = 2(60 - 3(17)) - 17$ $1 = -7(17) \pmod{60}$ $1=53\pmod{60}$ Therefore, $d = 53$ and the decryption method is $D(y) = y^{53} \pmod{77}$ 3. Suppose Bob wants to send Alice $m = 3$, he will need to compute $E(3) = 3^{17} \pmod{77}$ $3^{17} \pmod{77} = 3^{16} \cdot 3^1 \pmod{77}$

Use repeated squaring.

 $3^2 = 9 \pmod{77}$ $3^4 = 9^2 = 81 \pmod{77} = 4 \pmod{77}$ $3^8 = 4^2 = 16 \pmod{77}$ $3^16 = 16^2 = 256 \pmod{77} = 25 \pmod{77}$ Therefore, $3^{16} \cdot 3^1 \pmod{77} = 25 \cdot 3 = 75 \pmod{77}$

4. Alice can decrypt Bob's message using the decryption function $d(y) \equiv 75^{53} \pmod{77}$ Using repeated squaring, just like in Bob's encryption step, we find that $d(y) \equiv 75^{53}$ $(mod 77) = 3, which is Bob's message.$