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Abstract

This computational chemistry template demonstrates advanced molecular modeling tech-
niques including density functional theory (DFT) calculations, molecular dynamics (MD)
simulations, and drug discovery applications. The template showcases quantum chemical
property predictions, protein-ligand interactions, orbital visualizations, and energy land-
scape analysis using embedded Python calculations optimized for reproducible research in
CoCalc.
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1 Introduction

Computational chemistry has revolutionized our understanding of molecular systems, enabling
researchers to predict chemical properties, design new drugs, and understand complex biological
processes at the atomic level. This template provides a comprehensive framework for presenting
computational chemistry research, including;:

e Quantum chemical calculations (DFT, MP2, CCSD(T))

Molecular dynamics simulations (AMBER, GROMACS, CHARMM)

Drug discovery and virtual screening

Protein-ligand interaction analysis

Molecular visualization and property prediction

2 Computational Methods

2.1 Quantum Chemical Calculations

All quantum chemical calculations were performed using Gaussian 16 [I| at the B3LYP/6-
31G(d,p) level of theory. Geometry optimizations were followed by frequency calculations to
confirm stationary points.

Average HOMO-LUMO gap: -3.23 + 0.84 ¢V

The HOMO-LUMOgap is a crucial parameter for understanding electronic properties and
reactivity. As shown in fig. 1, the gap systematically decreases with increasing conjugation
length in polycyclic aromatic hydrocarbons.
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HOMO-LUMO Energy Gaps in PAH Series
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Figure 1: HOMO-LUMO energy gaps calculated at the B3LYP/6-31G(d,p) level of theory for
polycyclic aromatic hydrocarbons. The systematic decrease in gap energy with increasing molec-
ular size demonstrates the effect of extended conjugation.

2.2 Molecular Dynamics Simulations

Molecular dynamics simulations were performed using AMBER 20 [2| with the ff19SB force field
for proteins and TIP3P water model. The system was equilibrated for 10ns followed by 100 ns
production runs.

Final RMSD (protein): 2.31 & 0.02 A Final RMSD (ligand): 3.19 4 0.01 A Average potential
energy: -44.6 kcal/mol



Molecular Dynamics Trajectory Analysis
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Figure 2: Molecular dynamics trajectory analysis showing (top) root-mean-square deviation
(RMSD) of protein backbone and ligand heavy atoms, and (bottom) potential and kinetic energy
components over a 100 ns simulation period.

3 Drug Discovery Applications

3.1 Virtual Screening and Docking Analysis

High-throughput virtual screening was performed against a library of 10,000 drug-like compounds
using AutoDock Vina [3]. The binding affinities and poses were analyzed for structure-activity
relationships.

Total compounds screened: 1,000 Hits identified ( -8 kcal/mol): 421 Hit rate: 42.1Rule of
Five compliance: 367/421 (87.2



Virtual Screening Results Distribution ADMET Properties of High-Affinity Hits
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Figure 3: Virtual screening analysis: (a) Distribution of binding affinities from molecular docking,
(b) ADMET properties correlation for high-affinity hits, (c¢) Lipinski Rule of Five compliance,
and (d) Structure-activity relationship analysis.

3.2 Protein-Ligand Interaction Analysis

The protein-ligand interactions were analyzed using hydrogen bonding, hydrophobic contacts,
and electrostatic interactions. Key binding residues were identified through interaction frequency
analysis.

Total calculated binding energy: -55.0 kcal/mol Most important residue: HIS378 (-8.8 kcal/-
mol)
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Figure 4: Protein-ligand interaction analysis: (left) Interaction frequency heatmap showing hy-
drogen bonding, hydrophobic contacts, and electrostatic interactions for key binding site residues,
and (right) per-residue binding energy decomposition calculated from interaction frequencies.



4 Chemical Reactions and Mechanisms

4.1 Reaction Pathway Analysis

The reaction mechanism was investigated using transition state theory and intrinsic reaction
coordinate (IRC) calculations. The energy profile reveals the rate-determining step and inter-
mediate stability.

Activation energy (forward): 25.8 kcal/mol Reaction energy: -15.2 kcal /mol Rate-determining
step: Intl (25.8 kcal/mol)

Reaction Energy Profile: Diels-Alder Cycloaddition
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Figure 5: Reaction energy profile for the Diels-Alder cycloaddition calculated at the B3LYP/6-
31G(d,p) level. Transition states (TS) and intermediates (Int) are labeled with their relative
energies. The reaction is thermodynamically favorable with AEF = —15.2k/mol.

4.2 Molecular Orbital Analysis

The frontier molecular orbitals (HOMO and LUMO) control the reactivity and electronic prop-
erties. The orbital energies and symmetries determine the feasibility of chemical reactions.
Diene HOMO-LUMO gap: 1.2 €V Dienophile HOMO-LUMO gap: 2.9 eV



Molecular Orbital Energy Diagram: Diels-Alder Reaction
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Figure 6: Molecular orbital energy diagram for the Diels-Alder cycloaddition showing the fron-
tier orbital interactions between diene and dienophile. The HOMO-LUMO gap determines the
activation energy and reaction feasibility.

5 Results and Discussion

5.1 Quantum Chemical Properties

The calculated properties demonstrate excellent agreement with experimental values where avail-
able. The DFT calculations predict:

e HOMO-LUMO gaps ranging from 3.5¢eV to 4.8 eV for the aromatic series
e Binding energies of —8.5k/mol to —12.3k/mol for high-affinity ligands

o Activation barriers of 25.8 k/mol for the cycloaddition reaction

5.2 Molecular Dynamics Insights

The MD simulations reveal stable protein-ligand complexes with average RMSD values below
2.5A. Key findings include:

1. Hydrogen bonding dominates binding affinity (GLU123, HIS378)
2. Hydrophobic interactions provide selectivity (PHE234, TRP345)

3. Electrostatic complementarity stabilizes the complex



5.3 Drug Design Implications

The virtual screening identified promising lead compounds with:
e High binding affinity (< —8k/mol)
e Favorable ADMET properties

e Good Lipinski Rule of Five compliance (78 %)
6 Computational Details

Table 1: Summary of computational methods and software used.

Method Software Key Parameters
DFT Calculations  Gaussian 16 B3LYP/6-31G(d,p), Freq
MD Simulations AMBER 20 ff19SB, TIP3P, 100 ns

Molecular Docking AutoDock Vina Exhaustiveness = 8

Virtual Screening  Schrédinger Suite HTVS, SP, XP protocols
Visualization PyMOL, VMD Ray tracing, publication quality
Analysis Python/NumPy  matplotlib, seaborn, scipy

7 Conclusion

This computational chemistry template demonstrates the integration of quantum chemical cal-

culations, molecular dynamics simulations, and drug discovery applications. The reproducible

workflows and embedded calculations enable transparent and verifiable research outcomes.
Future extensions could include:

e Machine learning property prediction
e Free energy perturbation calculations

e QM /MM hybrid methods

e Enhanced sampling techniques

Data and Code Availability

All calculation inputs, outputs, and analysis scripts are available in the project repository. The
embedded Python code ensures full reproducibility of results and figures.
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