\qquad

All work on this lab should be the collective effort of all group members. Technology allowed on this lab includes: Desmos (https://www.desmos.com/calculator) and an approved TI calculator. This lab has 6 questions for a total of 57 points.

1. Write a delta-epsilon proof for each limit.
(a) (5 points) $\lim _{x \rightarrow 3}(2 x-3)=3$
(b) (5 points) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=4$
2. (10 points) Consider the following piecewise-defined function.

$$
f(x)= \begin{cases}2 x^{2}+b, & \text { if } x \geq 1 \\ -x^{3}, & \text { if } x<1\end{cases}
$$

Find the value of b such that $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)$.
3. Use the graph below to answer questions about its continuity.

(a) (4 points) What type of continuity does the graph have at $x=-2$? Explain why.

Right / Left / Both / Neither
\qquad
\qquad
\qquad
\qquad
(b) (4 points) What type of continuity does the graph have at $x=2$? Explain why. Right / Left / Both / Neither
\qquad
\qquad
\qquad
\qquad
(c) (2 points) What type of discontinuity does the graph have at $x=-2$? Jump / Infinite / Removable / None of These
(d) (2 points) What type of discontinuity does the graph have at $x=2$? Jump / Infinite / Removable / None of These
4. (5 points) The extreme value theorem states the following:
"If a real-valued function f is continuous in the closed and bounded interval $[a, b]$, then f must attain a maximum and a minimum, each at least once."

Does the function $f(x)=x^{2}-2 x+1$ satisfy the conditions of the extreme value theorem? Explain why or why not. [Hint: For this, you do not have to worry about left-hand and right-hand continuity.]
\qquad
\qquad
\qquad
5. (points) [Looking Ahead] Consider the function $g(x)=\sqrt{x} \sin \left(\frac{1}{x}\right)$, who's graph is shown below.

(a) (2 points) What do you expect $\lim _{x \rightarrow 0^{+}} g(x)$ to be?
(a) \qquad
(b) (4 points) Why does $\lim _{x \rightarrow 0^{-}} g(x)$ not exist?
\qquad
\qquad
\qquad
\qquad
(c) (4 points) Use the domain of the function $g(x)$ to explain why this function is continuous on $(0, \infty)$, but not on $[0, \infty)$
\qquad
\qquad
\qquad
\qquad
6. (10 points) Answer TRUE / FALSE for each of following questions regarding the graph of the function $h(x)$.

(a) $\lim _{x \rightarrow-1^{-}} h(x)=1$

True / False
(b) $\lim _{x \rightarrow 2} h(x)=2$

True / False
(c) $\lim _{x \rightarrow 1^{+}} h(x)=1$

True / False
(d) $\lim _{x \rightarrow 1^{-}} h(x)=2$

True / False
(e) $\lim _{x \rightarrow-1^{-}} h(x)=0$

True / False
(f) $\lim _{x \rightarrow c} h(x)$ exists at every c in the open interval $(-1,1)$.

True / False
(g) $\lim _{x \rightarrow c} h(x)$ exists at every c in the open interval $(1,3)$.
(h) $\lim _{x \rightarrow 3^{+}} h(x)$ does not exist.

True / False
(i) $\lim _{x \rightarrow 1} h(x)$ does not exist.

True / False
(j) The domain of $h(x)$ is $[-1,3]$.

True / False

