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Abstract

This template demonstrates computational fluid dynamics (CFD) analysis techniques in
aerospace engineering, including NACA airfoil analysis, aerodynamic performance calcula-
tions, propulsion system modeling, and flight dynamics simulations.

The template integrates Python computations with LaTeX for reproducible aerospace
engineering reports.
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1 Introduction

Computational Fluid Dynamics (CFD) has become an essential tool in aerospace engineering
for analyzing complex flow phenomena around aircraft, spacecraft, and propulsion systems.

This template provides a foundation for aerospace engineering reports that combine theoret-
ical analysis with computational results.

2 Aerodynamics Analysis

2.1 NACA Airfoil Geometry

The NACA 4-digit series airfoils are widely used in aerospace applications. For a NACA MPXX
airfoil, where M is the maximum camber percentage, P is the position of maximum camber, and
XX is the thickness percentage.

NACA 2412 Airfoil Parameters: Maximum camber: 2Maximum thickness: 12Leading edge
radius: 0.0720c

NACA 2412 Airfoil Geometry
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Figure 1: NACA 2412 airfoil geometry showing upper surface, lower surface, and camber line.

2.2 Aerodynamic Performance Analysis

Aerodynamic Analysis Results: Zero-lift angle of attack: -0.00 degrees Lift curve slope: 6.283
per radian (360.0 per degree) At alpha = 5 degrees: CL = 0.549



NACA 2412 Lift Curve - Thin Airfoil Theory
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Figure 2: Lift coefficient variation with angle of attack for NACA 2412 airfoil using thin airfoil
theory.

3 CFD Analysis Fundamentals

3.1 Governing Equations

The Navier-Stokes equations govern fluid flow in aerospace applications:

dp
5tV (pu)=0 (1)
a(gtu)+V-(pu®u)——Vp+V'T+Pf (2)
a(gf)+v-(<pE+p>u)=V-<kVT>+V-<T'U>+Pf'“ 3)

where p is density, u is velocity vector, p is pressure, T is viscous stress tensor, F is total
energy per unit mass, and f represents body forces.

3.2 Dimensionless Parameters

Key dimensionless parameters in aerospace CFD:
Key Dimensionless Parameters in Aerospace CFD: ===========c—ccccccc oo o o
Reynolds Number Re Inertial/Viscous forces Mach Number Ma Flow/Sound speed Prandtl
Number Pr Momentum/Thermal diffusivity Lift Coefficient Cy, Lift/Dynamic pressure Drag
Coefficient Cp Drag/Dynamic pressure Pressure Coefficient C), Local/Dynamic pressure

4 Propulsion Analysis

4.1 Turbojet Engine Performance

Turbojet Performance Summary: Sea level static specific thrust: 772.7 N-s/kg Cruise (Ma=0.8)
specific thrust: 352.7 N-s/kg Maximum analyzed Mach: 2.0



Turbojet Specific Thrust vs Flight Mach
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Figure 3: Turbojet engine performance characteristics showing specific thrust, velocities, propul-

sive efficiency, and thrust variation with flight Mach number.

5 Flight Dynamics

5.1 Aircraft Stability Analysis

Flight Dynamics Analysis: Aerodynamic center: 25.0Stable CG range: 20.0Maximum static

margin: 5.0




Longitudinal Static Stability Control Authority
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Figure 4: Longitudinal static stability analysis showing static margin variation with CG position
and elevator control authority.

6 Computational Methods

6.1 Finite Difference Discretization

For CFD applications, the governing equations are discretized using finite difference, finite vol-
ume, or finite element methods. A simple example of finite difference discretization for the 1D
heat equation:

or 9T

a2 4

ot~ " ox )
Numerical Method Demonstration: Grid points: 50 Time steps: 100 Stability parameter r =

0.025 (should be <= 0.5) Maximum temperature at t=0: 0.995 Maximum temperature at final
time: 0.907



1D Heat Equation Solution Temperature Evolution
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Figure 5: Solution of the 1D heat equation demonstrating finite difference methods commonly
used in CFD applications.
7 Conclusion

This template demonstrates the integration of theoretical aerospace engineering concepts with
computational analysis using Python and LaTeX. The combination of:

e NACA airfoil geometry generation and analysis

e Aerodynamic performance calculations using thin airfoil theory

Turbojet engine performance modeling

Flight dynamics and stability analysis

Numerical methods for CFD applications

provides a comprehensive foundation for aerospace engineering reports that require both
analytical and computational approaches. The PythonTeX integration allows for reproducible
results and seamless combination of code, calculations, and professional documentation.
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