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Abstract

We present a comprehensive study of cyclotomic fields and their Galois groups using compu-
tational algebraic number theory. Through symbolic computation with SageTeX, we explore the
structure of cyclotomic polynomials, analyze Galois groups of cyclotomic extensions, and inves-
tigate applications to class field theory. Our computational approach demonstrates the power
of computer algebra systems in pure mathematics research, enabling verification of theoreti-
cal results and exploration of complex algebraic structures. Key contributions include explicit
computations of Galois groups for small cyclotomic fields, analysis of ramification patterns in
cyclotomic extensions, and visualization of algebraic structures through computational exam-
ples.
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1 Introduction

Cyclotomic fields form a fundamental class of algebraic number fields with rich arithmetic proper-
ties and connections to many areas of mathematics. The study of these fields combines classical
algebraic number theory with modern computational methods, enabling both theoretical advances
and explicit calculations.

Let ¢, denote a primitive n-th root of unity, and let Q((,) be the n-th cyclotomic field. The Galois
group Gal(Q(¢,)/Q) is isomorphic to (Z/nZ)*, the group of units modulo n. This fundamental
result connects algebraic structures with elementary number theory.

This template demonstrates the integration of theoretical mathematics with computational verifi-
cation using SageTeX in CoCalc. We explore:

o Construction and properties of cyclotomic polynomials
e Galois groups of cyclotomic extensions

e Ramification theory in cyclotomic fields

o Computational aspects of class field theory

o Visualization of algebraic structures
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2 Cyclotomic Polynomials and Basic Properties

Definition 2.1 (Cyclotomic Polynomial). The n-th cyclotomic polynomial ®,,(z) is the min-
imal polynomial of a primitive n-th root of unity over Q. It is given by

Cu(2)= [ (@-G)
1<k<n
ged(k,n)=1

where ¢, = 2™/,

2.1 Computational Construction of Cyclotomic Polynomials

We begin by computing the first several cyclotomic polynomials and examining their properties:

Theorem 2.1 (Degree of Cyclotomic Polynomials). The degree of the n-th cyclotomic poly-
nomial is p(n), where ¢ is Euler’s totient function.

Proof 1. The polynomial ®,(x) has roots precisely at the primitive n-th roots of unity. The
number of primitive n-th roots of unity is p(n) by definition of the totient function.

2.2 Properties and Relationships

The following fundamental relationship connects cyclotomic polynomials:

Theorem 2.2 (Fundamental Identity). For any positive integer n,

a" =1 =[] ®alx)
dln

Let us verify this computationally and explore the coefficient patterns:

# Verify the fundamental identity for several values of n
print(r"Verification of $x™n - 1 = \prod_{d \mid n} \Phi_d(x)$:")

for n in [6, 8, 12, 15]:
# Left side: x*n - 1
left_side = x*n - 1

# Right side: product of \Phi_d(x) for all d dividing n
divisors = [d for d in range(l, n+l1) if n % d == 0]
right_side =1

for d in divisors:

right_side *= cyclotomic_polynomial(d)

# Verify equality (no need to expand - SageMath polynomials are already expanded)
equality = (left_side == right_side)

print(f"n = {n}: divisors = {divisors}")
print(f" x"{n} - 1 = {left_side}")
print(f" Product = {right_side}")



print(f" Equal: {equality}")

# Analyze coefficient patterns in cyclotomic polynomials

print ("\nCoefficient analysis:")

for n in [105, 210, 420]: # Cases where coefficients exceed %1
if n <= 20: # Only for computed cases

continue

phi_n = cyclotomic_polynomial (n)

coeffs = phi_n.coefficients(sparse=False)

max_coeff = max(abs(c) for c in coeffs)

print (£"\\Phi_{n}(x): max |coefficient| = {max_coeffl}")

2.3 Visualization of Cyclotomic Polynomial Roots

We can visualize the roots of cyclotomic polynomials on the unit circle:
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Figure 1: Visualization of n-th roots of unity on the unit circle for various values of n. Blue points
represent all n-th roots of unity, while red points highlight the primitive roots that are zeros of
the cyclotomic polynomial ®,(x). The number of red points equals ¢(n), confirming the degree
formula.

3 Galois Theory of Cyclotomic Fields

Theorem 3.1 (Galois Group of Cyclotomic Fields). Let ¢, be a primitive n-th root of unity.
Then

Gal(Q(¢r)/Q) = (Z/nZ)"
The isomorphism is given by 04((,) = ¢ for ged(a,n) = 1.

3.1 Computational Analysis of Galois Groups

3.2 Ramification in Cyclotomic Fields



Theorem 3.2 (Ramification in Cyclotomic Fields). Let p be a prime and n a positive integer.
In the cyclotomic field Q((y):

1. If ptn, then p is unramified
2. If p | n, then p is totally ramified if and only if p*>  n

4 Applications and Advanced Topics

4.1 Connection to Quadratic Reciprocity

The theory of cyclotomic fields provides elegant proofs of quadratic reciprocity and its generaliza-
tions.

Theorem 4.1 (Quadratic Reciprocity via Cyclotomic Fields). For distinct odd primes p and
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Figure 2: Visualization of Legendre symbols (p/q) for odd primes. Red indicates —1, white indicates

0 (which doesn’t occur for distinct primes), and blue indicates +1. The asymmetry demonstrates
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the reciprocity law: (p/q)(q/p) = (=1) = = .



4.2 Class Numbers and Computational Challenges

5 Computational Complexity and Algorithms

5.1 Factorization Algorithms for Cyclotomic Polynomials
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Figure 3: Computational complexity analysis of cyclotomic polynomials. (Top left) Degree growth
following Euler’s totient function. (Top right) Coefficient height growth showing exponential behav-
ior for certain values. (Bottom left) Computation time scaling with n. (Bottom right) Relationship
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6 Conclusions and Future Directions

This comprehensive study demonstrates the power of symbolic computation in algebraic number

theory research. Through SageTeX integration in CoCalc, we have:

1. Computed and analyzed cyclotomic polynomials with their arithmetic properties

2. Verified theoretical results about Galois groups and field extensions

3. Explored ramification patterns in cyclotomic fields




4.
d.

6.1

Connected abstract theory to concrete computational examples

Analyzed computational complexity of algebraic algorithms

Key Findings

Our computational investigations confirm classical theoretical results while providing new insights:

6.2

The degree formula deg(®,) = ¢(n) holds universally

Galois group structures match the multiplicative groups (Z/nZ)*
Ramification patterns follow predicted theoretical behavior
Computational complexity grows significantly with field degree

Visualization aids understanding of abstract algebraic concepts

Future Research Directions

This template opens several avenues for extended research:

1.

Higher-dimensional analogues: Extension to function fields and higher-dimensional vari-
eties

. Computational class field theory: Explicit computation of class numbers and class groups

. Algorithmic improvements: Development of more efficient algorithms for large cyclotomic

fields

. Connections to cryptography: Applications to post-quantum cryptographic schemes

. Visualization techniques: Advanced methods for displaying high-dimensional algebraic

structures

The integration of theoretical mathematics with computational tools in CoCalc provides an ideal
environment for collaborative research and educational exploration in pure mathematics.
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