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Abstract

This template demonstrates advanced techniques for solving differential equations and partial
differential equations using both analytical and computational methods. We showcase ordinary
differential equations (ODEs), partial differential equations (PDEs), boundary value problems;
and initial value problems. The template includes mathematical theory, numerical solution
methods, stability analysis, and comprehensive visualizations for educational and research ap-
plications.
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Introduction

Differential equations form the mathematical foundation for modeling dynamic systems across
science and engineering. This template demonstrates comprehensive approaches to solving both
ordinary differential equations (ODEs) and partial differential equations (PDEs).

Key areas covered include:

Analytical solution techniques for linear and nonlinear ODEs
Numerical methods for initial and boundary value problems
Partial differential equations with applications

Stability analysis and qualitative behavior

Computational visualization of solutions

2  Ordinary Differential Equations

2.1

First-Order Linear ODEs

Consider the first-order linear ODE:

Ut Py = Q)
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The general solution involves an integrating factor u(t) = eJ PO

Ordinary Differential Equations Analysis: Maximum error: 2.49e-01 First-order ODE analysis saved
to figures/ode_ first_ order.pdf
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Figure 1: First-order linear ODE analysis. (Left) Comparison between numerical and analytical
solutions for % = —2y + sin(¢) with y(0) = 1. (Right) Absolute error between numerical and
analytical solutions showing excellent agreement.

2.2 Second-Order ODEs: Harmonic Oscillator

The damped harmonic oscillator equation:

d?z T

where v is the damping coefficient and wyq is the natural frequency.

Harmonic oscillator analysis saved to figures/harmonic_ oscillator.pdf



Damped Harmonic Oscillator Phase Space Trajectories
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Figure 2: Damped harmonic oscillator analysis. (Left) Time evolution showing different damping
regimes from undamped oscillations to overdamped decay. (Right) Phase space trajectories illus-
trating the qualitative behavior of the dynamical system.

3 Partial Differential Equations

3.1 Heat Equation

The one-dimensional heat equation:
ou 0%u
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where u(z,t) is the temperature and « is the thermal diffusivity.

Stability parameter r = 0.024 (should be < 0.5) Heat equation analysis saved to figures/heat__equation.pdf
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Figure 3: Heat equation numerical solution. (Left) Temperature profiles at different times showing
diffusive spreading. (Right) Contour plot of temperature evolution demonstrating the smoothing
effect of thermal diffusion.



4 Conclusions

This comprehensive differential equations template demonstrates the integration of analytical and
computational methods for solving ODEs and PDEs. Key contributions include:

1.

Ordinary Differential Equations: Linear and nonlinear ODEs with analytical and nu-
merical solutions

. Partial Differential Equations: Heat equation solved using finite difference methods
. Stability Analysis: Numerical stability conditions and convergence studies

. Visualization Techniques: Phase space plots, contour plots, and error analysis

Key Insights

Numerical methods provide excellent approximations when analytical solutions are unavail-
able

Stability analysis is crucial for finite difference schemes
Phase space analysis reveals qualitative behavior of dynamical systems

Proper boundary conditions are essential for well-posed problems

Future extensions can include advanced topics such as stiff differential equations, spectral methods
for PDEs, and adaptive mesh refinement techniques.
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