MATH 314 Spring 2024 - Class Notes

2/14/2024

Scribe: Rayquan Williams

Summary: Hill Cipher Decryption, Moving Beyond mod 26, Extended Euclid's Algorithm, Encode in Binary

Moving beyond (mod 26)

- Residue A residue modulo n, is the collection of all integers that have the same remainder (mod n)
- Remainder is between 0 and n Ex: The residue 5 (mod 8) is all the numbers $[-3,5,13,21,28]$
- Z_m For the set of all residues (mod m) $Z_6 = [0,1,2,3,4,5]$
- Ring Any collection of things we can add, subtract and multiply with regular arithmetic rules. To divide we must use inverse principles $a^{-1}(a \times a^{-1}) \equiv 1 \mod m$ if $gcd(a, m) \equiv 1$

How to compute Euclid's Algorithm (a is dividend, b is divisor, q is quotient, r is remainder)

- 1. Long divide a by b, always get r smaller than b $(a = bq + r)$
- 2. If r divides a and b, d divides $(a-bq = r)$ so d divides r
- 3. Iterate these steps until $r = 0$, the previous remainder is the gcd.

Example: $gcd(19,62)$

 $62 / 19 = 3 R(5)$, so $62 = 3(19) + 5$ $19 / 5 = 3 R(4),$ so $19 = 3(5) + 4$ $5/4 = 1$ R(1), $5 = 1(4) + 1$ $4/1 = 4 R(0), so 4 = 1(4) + 0$ $gcd(19,62) = 1$

Extended Euclid's Algorithm (a is dividend, b is divisor, q is quotient, r is remainder) If $gcd(a,b) = d$, then there exists x and y so that $ax + by = d$ Steps for Extended Euclid's Algorithm

1. Substitute

2. Distribute

- 3. Combine like terms
- 4. Repeat

Example: Find integers x and y so that $19x + 62y = 1$. What is 19^{-1} (mod 62)?

Equations:

 $5 = 62 - 19(3)$ $4 = 19 - 3(5)$ $1 = 5 - 4(1)$ $1= 5-4(1)=5-[19-5(3)](1)=5(4)-19=[62-19(3)](4)-19=62(4)-19(13)$ x = -13 y = 4 $1 = 62(4)$ -19(13) (mod 62) $1 = 19(49)$ 19^{-1} = 49

Encode Messages in Binary

ASCII converts strings to numbers A - 65 a - 97

Assume plaintexts are binary strings

2 kinds:

Stream (Like Affine) and Block (Like Hill) Ciphers

For Stream ciphers, setup is to generate a key (binary string) and encrypt it by xoring the key with plaintext

Mod 2 Addition and Subtraction are the same, $1 \equiv -1(mod2)$ D(x) = $x \oplus k$

Xor results are $0 \oplus 0 = 0, 1 \oplus 0 = 1, 0 \oplus 1 = 1, 1 \oplus 1 = 0$

Example: $E(x) = x \oplus k$, $P = 011010$ and $K = 101010$

 $x \oplus K = 110000$

Decrypt 110000 using key 101010: $110000 \oplus 101010 = 011010$

One Time Pad

Key is a randomly generated string of 1's and 0's. This key is only used one time $E(x) =$ $x \oplus k$ D(y) = $y \oplus k$

Has "perfect security", every plaintext is equally likely to correspond to any ciphertext Disadvantages: The key is as long as the plaintext and can only be used one time, transmitting the key securely is as hard as transmitting the message Random

Random number generators: Linear congruential random number generator (LCRNG) and Linear Feedback Shift Register (LFSR)

LCRNG is used by java.random, Pick a modulus and 2 numbers a and b, use equation $r_i \equiv r_{-1} + b \pmod{m}$ to generate a string of random numbers

Always start with random seed r_0 Ex: m = 11, a = 5, b = 7, $r_0 = 2$ $r_0 = 2 r_1 \equiv 5(2) + 7 = 10 + 7 = 17 = 5 \pmod{11}$ $r_2 \equiv 5(5) + 7 = 25 + 7 = 32 = 10 \pmod{11}$

 $r_3 \equiv 5(10) + 7 = 50 + 7 = 57 = 2 \pmod{11}$ $r_4 = 5$

LFSR is better RNG, seed is a string of k bits and generate new bits using previous k bits, is recursion relation

 $b_i \equiv a_1b_{i-1} + a_2b_{i-2} + \dots \dots$ a_kb_{i-k} (mod 2) where $a_1, a_2, \dots a_k$ are fixed numbers (mod 2)