{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ppm/min
Time
2016-02-19 13:26:00NaN
2016-02-19 13:27:00718.0
2016-02-19 13:27:00NaN
2016-02-19 13:31:00337.0
2016-02-19 13:36:00332.0
\n", "
" ] }, "execution_count": 9, "metadata": { }, "output_type": "execute_result" } ], "source": [ "column_names = ['Time', 'ppm/min']\n", "In= pd.read_csv('../../DataFiles/Netatmo2016_2017CO2ppm.csv', parse_dates=True, index_col=0, names = column_names)\n", "In.head()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": { }, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv8AAAILCAYAAAB/+PMtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XeYVNXdB/DvWcoCKyBFBSu2BDUaeyFqLEnU2Etejb4KiTHRqFFfTGI0GixR31cTo8ESK7YEKxKKJUqTIr33tgsLu8Duwla2znn/mJllZvbOvffcXr6f5+EZ9s4tZ9q5v3vuOb8jpJQgIiIiIqLoK/C7AERERERE5A0G/0REREREMcHgn4iIiIgoJhj8ExERERHFBIN/IiIiIqKYYPBPRERERBQTDP6JiIiIiGKCwT8RERERUUww+CciIiIiigkG/0REREREMcHgn4iIiIgoJhj8ExERERHFBIN/IiIiIqKYYPBPRERERBQTDP6JiIiIiGKis98FCDMhxEYAvQAU+1wUIiIiIoquQQBqpJSH2t0Rg397enXv3r3vUUcd1dfvghARERFRNK1cuRK7d+92ZF8M/u0pPuqoo/rOnz/f73IQERERUUSddNJJWLBgQbET+2KffyIiIiKimGDwT0REREQUEwz+iYiIiIhigsE/EREREVFMMPgnIiIiIooJBv9ERERERDHB4J+IiIiIKCaY598jiUQCVVVVqK2tRVNTE6SUfheJYkAIgcLCQvTs2RN9+/ZFQQGv94mIiOKMwb8HEokENm/ejIaGBr+LQjEjpURjYyMaGxtRX1+Pgw46iBcAREREMcbg3wNVVVVoaGhA586dMWDAABQVFTEAI08kEgnU19ejvLwcDQ0NqKqqQv/+/f0uFhEREfmEEagHamtrAQADBgxAz549GfiTZwoKCtCzZ08MGDAAwJ7vIhEREcUTo1APNDU1AQCKiop8LgnFVfq7l/4uEhERUTwx+PdAenAvW/zJL0IIAOBAcyIiophjNEoUA+ngn4iIiOKNwT8RERGRyxqaW7Gjll0vyX8M/omIiIhcVFHXhNMf/wpnPPEVJq/e7ndxKOYY/BMRERG56M8TVqKmsRWtCYmfvTHX7+JQzDH4JwqIYcOGQQiB4uJiv4tCREQO2rJrt99FIGrH4J/IpJaWFvTp0weXXXaZ30UhIiIisoTBP5FJkydPxq5du3DllVe6sv8nnngCK1euxAEHHODK/omIiIg6+10AorAYM2YMOnXqhEsvvdSV/Q8cOBADBw50Zd9EREREAFv+yWPFxcUQQmDYsGFYtWoVrrjiCvTt2xdFRUU488wz8cUXX2StP2rUKAghMGrUKEyYMAFDhgxBUVER+vTpg2uuuQZr167tcIx03/mNGzdi5MiROProo9GtWzcMGjQIjz/+ePtEVx988AFOPfVUFBUVYd9998Udd9yBxsZGzXJLKTF27FicddZZ6N+/PwBgypQpEEJgxIgRmDdvHi688EL07t0bffr0wdVXX43NmzcDADZs2IDrrrsO++yzD7p3745zzz0XixcvzlvuzD7/me9XcXExrrvuOvTv3x/dunXDySefjPHjx1v6HIiIiCieGPyTLzZu3IgzzjgDlZWV+NWvfoWf/OQnmD9/Pi666CK89957Hdb/+OOPccUVV+DAAw/EXXfdhTPOOAMfffQRTj/9dKxevVrzGPfeey/+9Kc/4dRTT8Wtt96KgoICPPDAA3j44Yfx3HPPYejQoTjiiCNw6623YsCAAXj++edxzz33aO5r1qxZKCsrw1VXXdXhublz5+Kss84CANxyyy049dRT8fHHH+P888/HqlWrcOqpp6K0tBQ33XQTLr74YkydOhU//OEPUVdXZ/r9Kikpwamnnori4mLceOONuPbaa7Fs2TJcfvnlmDx5sun9EBERUbyx208ADLpvgt9FMK34yYsd2c+0adNw77334qmnnmpfdscdd+CMM87Arbfeiosuugi9evVqf27cuHEYN24cLrnkkvZlzz77LO6++278+te/xldffdXhGPPnz8eSJUva+9CPGDECRxxxBJ566in06NED8+fPx1FHHQUAaGpqwgknnIDXX38dDz/8MPbdd9+sfY0ZMwYAcMUVV3Q4zsSJE/HOO+/ghhtuaF9288034/XXX8eQIUMwfPhwPPDAA+3PPfroo3jooYfw2muv4a677jL1fk2ZMgUjRozAn/70p/Zl119/PS688EI89dRTOPfcc03th4iIiOKNLf/ki969e+Ohhx7KWnbyySfjhhtuwK5du9qD7bTzzjsvK/AHkhcLhx9+OCZNmoSSkpIOx3jwwQezBs/uvffeuOyyy9DQ0IDbbrutPfAHgMLCQlx77bVobm7GypUrO+xrzJgxOPnkk3HQQQd1eO7MM8/MCvwBYOjQoe2v87777st67qabbgIALFq0qMO+8jnkkEPwxz/+MWvZBRdcgIMPPhhz5swxvR8iIiKKNwb/5IsTTzwRPXv27LD8nHPOAQAsXLgwa/n3v//9Dut26tQJZ555pub6QPJiItf+++8PADjppJM6PJe+UCgtLc1avmTJEqxfvz5vlh+94xx//PHo1KmTqePo0doPABx00EHYuXOn6f0QERFRvLHbTwA41ZUmTPbbbz/N5QMGDAAAVFdX21ofSLa65+rcubPhcy0tLVnL03chtPr7O3kcPXvvvbfm8s6dOyORSJjeDxEREcUbW/7JF9u2bdNcXl5eDqBj0Ky6vpPGjBmDwYMHY/Dgwa4dg4iIiMgLDP7JFwsWLEBtbW2H5VOmTAEAnHDCCVnLp06d2mHdtrY2TJ8+XXN9p2zcuBGLFy92bWIvIiIiIi8x+CdfVFdX45FHHslaNm/ePLz77rvo3bt3h2B70qRJHXLajxw5EuvXr8e5556LQw45xJVyfvzxxwDA4J+IiIgigX3+yRdnn302Xn31VcyePRvf+973UFZWhvfeew+JRAL/+Mc/stJ8AsCll16KK6+8EldeeSWOOOIILF68GBMnTkTfvn3xwgsvuFbOMWPG4MADD8Qpp5zi2jGIiIiIvMKWf/LFoYceipkzZ6JPnz546aWX8P777+PEE0/ExIkTce2113ZY/6qrrsKYMWOwefNmPPvss5gxYwauuuoqzJo1y7W++Nu2bcOsWbPY6k9ERESRwZZ/8s1RRx2FsWPHml7/kksu6ZDrX8uoUaMwatQozedGjBiBESNGaD43bNgwDBs2rP3vsWPHIpFI5A3+zznnHEgpNZ8bNGhQ3ucAaD6nVW6j/aTHSBARERGZwZZ/ojzGjBmDfv364eyzz/a7KERERESOYMs/UR6ffvqp30UgIiIichRb/omIiIiIYoIt/+Qpoz7suXL74RMRERGRdWz5JyIiIiKKCQb/RDGgcreFiIiIoovBvweEEACARCLhc0kortLBf/q7SERERPHE4N8DhYWFAID6+nqfS0Jxlf7upb+LREREFE8M/j3Qs2dPAEB5eTlqa2uRSCTYDYNcJ6VEIpFAbW0tysvLAez5LhIREVE8MduPB/r27Yv6+no0NDSgtLTU7+JQTPXo0QN9+/b1uxhERETkIwb/HigoKMBBBx2Eqqoq1NbWoqmpiS3/5AkhBAoLC9GzZ0/07dsXBQW82UcURG0JiU4FHJNDRO5j8O+RgoIC9O/fH/379/e7KEREFBDNrQlc/8o32FhRj5HXn4gzDu/nd5GIKOLYDEhEROSTt2YVY17JTlTWN+Onr3zjd3GIKAYY/BMREflkVXmt30Ugophh8E9ERESR0djShrtGL8RNr8/Bll27/S4OUeDYDv6FEP2EEL8QQowRQqwTQuwWQlQLIaYLIW4WQhTkrD9ICCF1/o3WOdZQIcQcIURd6hhThBCX6KzfSQhxtxBiSapcVUKIiUKIIXZfNxEREQXPy9M2YOyirZi2ZgeGv7/I7+IQBY4TA35/AuBFAGUAJgPYBGA/AFcBeBXARUKIn8iO6W0WA/hEY3/LtA4ihHgawHAApQBeAdAVwHUAxgkh7pRSjsxZXwAYDeAaAKsBjATQF8C1AKYJIa6WUo5Vf7lERETOYH4f501cWtb+/282VPlYEqJgciL4XwPgMgATpJSJ9EIhxP0A5gC4GskLgY9ytlskpRxh5gCplvrhANYDOEVKuTO1/CkA8wE8LYQYL6UsztjsOiQD/5kAzpdSNqa2eQnAdACvCCEmSSnZ4ZKIiIiIYsF2tx8p5SQp5bjMwD+1vBzAS6k/z7F5mFtTj39OB/6pYxQDeB5AIYCf5WxzW+rxj+nAP7XNXADvAdgHyYsDIiIiIqJYcHvAb0vqsVXjuf2FEL8SQtyfejxOZz/npR4/03ju05x1IIQoBDAEQAOAr81sQ0REREQUda5N8iWE6AzgptSfWkH7D1P/MreZAmColHJTxrIiAAcAqJNSlqGjtanHb2UsOwJAJwAbpJRaFx5a2xARERERRZqbM/w+CeA7ACZKKT/PWN4A4FEkB/tuSC07DsAIAOcC+EoIcbyUsj71XO/UY3We46SX752xzMo2eQkh5ud5arCZ7YmIiLQIjvglIo+50u1HCPEbJAforgJwY+ZzUsrtUsqHpJQLpJS7Uv+mAfgRgNlIttr/wsJhc7MJ6RbRwjZERERERKHmeMu/EOJ2AM8CWIFklh1TebaklK1CiFcBnAbg7NQ+gD2t9L01N9Ru5TfappfGNnplO0lreeqOwIlm9kFERERE5DdHW/6FEHcjmU9/GYBzUxl/VOxIPRalF6S6/2wBsJcQYqDGNkemHtdkLFsHoA3AYamxB2a2ISIiopDrMKsQEWVxLPgXQvwewDMAFiEZ+G+3sJvTU48bcpZPSj1eqLHNRTnrQErZhGR+/x4AzjKzDRERERFR1DkS/AshHkRygO98JLv6VOise5oQoqvG8vMA3JP6852cp9PzBTwghOiTsc0gALcDaALwRs42L6YeHxNCdMvY5hQkZ/ndgY4TjxEREXlGcI5fIvKY7T7/QoihAB5BspvN1wB+IzqmLyiWUo5K/f9/ARyTSutZmlp2HPbk3H9QSjkzc2Mp5UwhxF8B/A+AJUKIDwF0RTKI7wvgzpzZfQFgNJIzC18DYKEQYhyAfqltOgG4RUpZY/FlExER2SaZd4KIPObEgN9DU4+dANydZ52pAEal/v82gCsBnIJk95suALYBeB/ASCml1qRckFIOF0IsAXAHgF8CSABYAOApKeV4jfWlEOKnSHb/+TmAOwE0ApgG4LHcCwwiIiIioqizHfxLKUcgmaPf7PqvAXjN4rHeBPCmwvqtSI5DeMbK8YiIiNzEbj/O490UIn2u5PknIiIiIqLgYfBPRETkE87wS0ReY/BPRETkE+akJyKvMfgnIiIiIooJBv9EREQ+YbcfIvIag38iIiKKDHalItLH4J+IiMgnbPn3T2VdE/7w8RL832er0NqW8Ls4RJ5xYpIvIiIisoCt1P55eNwK/HvxVgDA/nt3x3+ffojPJSLyBlv+iYiIKHbSgT8A/HP2Jh9LQuQtBv9EREQ+YbcfIvIag38iIiKKDPakItLH4J+IiIhijXdgKE4Y/BMRERERxQSDfyIiIiKimGDwT0RE5Bv2NwkCdvuhOGHwT0REREQUEwz+iYiIKDKkhZnTBO/AUIww+CciIiIiigkG/0REREQuamlL+F0EonYM/omIiHzCgabB4PbnsHDTLncPQKSAwT8RERERUUww+CciIqLIUB/uC1gYI0wUWgz+iYiIKDI27KhX3obdryhOGPwTEREREcUEg38iIiIiophg8E9ERESxxl4/FCcM/omIiIiIYoLBPxERERFRTDD4JyIiIiKKCQb/REREPmFfcyLyGoN/IiIiijcm+qcYYfBPREREZEJbglMBU/gx+CciIvIJG5zDY8zCUhz/yBe4e/RCv4tCZAuDfyIiIp/MK97pdxEI5sZe3PPeYtQ2tuKTRVuxcBM/NwovBv9EREQ+WVVe63cRyILy6ka/i0BkGYN/IiIiIqKYYPBPRERE5KKjBvbyuwhE7Rj8ExEREbmoqGsnv4tA1I7BPxEREcWaatYlZmmiMGPwT0REREQUEwz+iYiIiIhigsE/EREREVFMMPgnIiIiIooJBv9ERERERDHB4J+IiIhijcl7KE4Y/BMREREp4eUChReDfyIiIoo14XLifs4LQEHC4J+IiIgsqW5owSvTNmDGugq/i2KLlNLl/bu6eyIlnf0uABEREYXToxNW4MP5pQCA6b8/Fwf26eFzibzCaJ7Ciy3/REREZEk68AeAf83Z5GNJ7FHv9qO2Prv9UJAw+CciIvLJ4fsU+V0ExxQwwiUKBQb/REREPjn2gN5+F8ExDP3zY59/ChIG/0RERD5xO8uMl9ZX1PtdBMui8ykQGWPwT0RERLaVVzda2q6xpQ0z11WgsaXN1vEbW9pw9Yszbe3DLRG6xqMIYLYfIiIisu3iYwda2u7mN+dixrpKnHVkf7x982kdnm9LSHyxvBwAcMExA1BQoB1JvzxtA+aX7LRUBqI4sd3yL4ToJ4T4hRBijBBinRBitxCiWggxXQhxsxBC8xhCiCFCiIlCiCohRIMQYokQ4m4hRCedY10ihJiS2n+dEGK2EGKoQfmGCiHmpNavTm1/id3XTUREZFeUGoR7dM17+s4rkZCYsa4SAPD12grNfPtfLC/Hbe8uwG3vLsAXK7bl3deyLdXKxyeKIye6/fwEwCsATgMwG8DfAHwE4DsAXgXwvsjp1CiEuBzANABnAxgD4HkAXQE8A2C01kGEEHcAGJfa7zupY+4PYJQQ4uk82zwNYBSAgan13wFwLIBxqf0RERGRT3JD/bZEx+D/tncXtP//1+/ON70vN7EbD4WZE91+1gC4DMAEKWUivVAIcT+AOQCuBnAVkhcEEEL0QjIQbwNwjpRyXmr5gwAmAbhGCHGdlHJ0xr4GAXgaQBWAk6WUxanljwCYC2C4EOIjKeWsjG2GABgOYD2AU6SUO1PLnwIwH8DTQojx6X0RERGRv1oTEp11biC4NUBadbfM3kNhZrvlX0o5SUo5LjPwTy0vB/BS6s9zMp66BsA+AEanA//U+o0A/pj687acw/wcQCGAkZnBeiqgfzz1560526T//nM68E9tU4zknYZCAD8zfoVEREQuyQk6pZQorqjX7P4SRbmvs1Wj5T8TG9yJ7HM7209L6rE1Y9l5qcfPNNafBqABwBAhRKHJbT7NWcfONkRERL4Z/sFinPP0FPw6o6tLnLS1Wb/oicn1EpFtrmX7EUJ0BnBT6s/MAPzbqcc1udtIKVuFEBsBHAPgMAArTWxTJoSoB3CgEKKHlLJBCFEE4AAAdVLKMo3irU09fsvka8nXyXCwme2JiIjM+HjBFgDAp8vK0djShm5d1AfRhkluvN6aSGiul2al18/t7y7A4tJd+L9rjsOQw/ur78CBcqzYWuPIcYmc4GbL/5NIDs6dKKX8PGN5ejrDfMPy08v3trBN75xHlWMQERF5Suh0ZEnEoCk79yUad/tRj/4nLC1D6c7duP6V2crbOmHLrt2ob7Y3hwGRk1xp+RdC/AbJwbarANyounnqUaXWs7KN6fWllCdpHjR5R+BExWMSERGRhrBc70gpMXnVdjS2tOFHxwxApzxzDwCIbRcuCi7Hg38hxO0AngWwAsD5UsqqnFVyW+lz9cpZL/3//qltKnW2qclYX+8YRncGiIiISIGVuF3mbGV4t8OlEb+qdxRmra/Em7NKAADP/fQEXPbd/fOuu3jzLltlI3Kao91+hBB3AxgJYBmAc1MZf3KtTj126G+fGidwKJIDhDeY3GYggCIApVLKBgCQUtYD2AJgr9TzuY5MPXYYQ0BEROQV5ovPZhT8679d3t02SAf+APCbfy307LhETnAs+BdC/B7JSboWIRn4b8+z6qTU44Uaz50NoAeAmVLKJpPbXJSzjp1tiIiIyAIr1zG5sb5v3X54EUYx4kjwn5qg60kkJ886X0pZobP6hwAqAFwnhDg5Yx/dADyW+vPFnG3eANAE4I7UhF/pbfoAuD/150s526T/fiC1XnqbQQBuT+3vDf1XFj47apuwmwOLiIhCz8rgVj85Ebcbtvy79ZaEZKwBkRNs9/kXQgwF8AiSM/Z+DeA3GjPwFUspRwGAlLJGCHELkhcBU4QQo5GcufcyJFN6fgjgvcyNpZQbhRC/BfAcgHlCiPcANCM5YdiBAP6SObtvapuZQoi/AvgfAEuEEB8C6ArgWgB9AdwZtdl9p67ZgZtHzUVRYWd8+T/fxz49C403IiIiCgiDZD9E5AAnBvwemnrsBODuPOtMBTAq/YeU8hMhxPcBPADgagDdAKxDMlB/TmpMbSil/LsQohjAvUjOH1CA5KDiP0op39Q6qJRyuBBiCYA7APwSQALAAgBPSSnHq73M4Bv6+hwAQPXuFjw2YQWeve4En0tERER6wtW277zcs71xn3/XRvwSxYbt4F9KOQLACAvbzQDwY8VtxgEYp7jNmwA0Lw6ibOuu3X4XgYiISIlG25/Ctg4WRNH/frYKd51/ZOQnZaNocHOSL/JRWHIlExGRtjhkAuqY6tOngtj04pT1eG36Rr+LQWQKg38iIiKfxCHA16Oa7Ufv/bJz3eDEx/D3SWsd2AuR+xj8ExERUSDYy/Pvr7DetaD4YfBPREREvsiNl8ct3orGlpCmq2bwTyHB4D+iWAcREQVf2HL5u+2FKevxxMSVeZ+v5zw2RLYx+CciIiLbrCSa0Mru8+asEgdK473cwctEQcXgn4iIiHzhZLhsJ02oEwOvmWWPwoLBPxERkU+ilO0nSq/FCqPBykRBweA/ouy0gBARUXTsamgO7CDaKJ2qIvRSKOIY/BMREUXU12t34NTHv8L3npyEqvpmV48VpUDeiri/fgoPBv9EREQ+0esq40Q3mhtfm4Pm1gQq65vx5wn5s+j4xkLAvLO+GV+t3BbYuxlEQdfZ7wIQERGR+zZXNbi6f6/6/F/xwgyUVDbgiuP3x9+uO6F9ORveicxhy39EsRIkIiIvWUr1aeFsVVKZvIj5ZNFW9QPmwfkWKE4Y/BMREfkm3kGnk/3k2eeeyBwG/0RERDHASajyi3uaUooXBv9ERETki8r6Jsf2ZSeA510DihMG/xHFioyIKPi8bHEO4nmhd/euju0riK+PKIgY/BM5oKSyHve8twivfr3B76IQEYVGUCakZLcfihOm+iRywK3vLMDKshqMWbgFxx24N049tK/fRSIiyhKMMDubk2UK4usjCiK2/BM5YGVZTfv//7Oi3MeSEBGFR0Aa/j0XlDseFE8M/iOK1QoRUfB52dskiD1bgpKByOtuP4lgvGyKKQb/RA5jgw4RBZHbAa6VQD6uQTBb/slPDP6jihWLb/jOExGZE9cgOK4XPRQMDP6JiIh8EqUsM8JCxyJnZ/gNT0QdlO5OFE8M/okcFqLzDxGRY6wEtHGtL+P6uikYGPwTERHFgJWWebcFpQXc6/eGwT/5icF/RLFe8U9QTmZEFHxBDMi9FNcgmOcJ8hOD/4iKa4UaBHzviSiQAnidEdfqkgN+yU8M/omIiMgXiZi2loRpcDJFD4P/iOItRSKi4ItSth8rKmqb/C6CL9jyT37q7HcByB1sVCAiokxBu86476MlGD13s2P7C9N5b1dDM3p37+J3MSim2PJP5DDeziUiMqYX+Cc8bhr3+g5Mze5Wbw9IlIHBf0Qx/vQP33oiMsvLmDNMXYxaI94vZkDvbn4XgWKMwX9ExXUQFRER+cPJ005bxIN/jssjPzH4JyIi8okIU3O8h1oTCb+L4Cq2z5GfGPwTOYyVOhHFkcp1jNHYKCst/2FqTed5gvzE4D+iWLH4J0wnICKKD7dnE3byvBP1Pv88T5CfGPxHFPv8+4dvPRE5wem6JEw9jCLf5z/aL893b39Tgv96aRamrN7ud1ECicF/RLFeISKisIp6yz8b6NxTUdeEBz9ZhjnFVRj2xly/ixNIDP6JiIgc1twa7QGrdhnFvm1tFvr824invR54vXZbnafHi5OyXY2O7Suqv2MG/xHFiab8w3eeKL6klPj5qLk47uHP8dH8Ur+LE1pWsv3MXF/pQkncUVTY2e8ikIE7/7UQx474HG9/U+J3URzH4D+iGPv7h+89UXxNX1eBSau2o7ElgeEfLPa7OFnY5z84+u/V1e8iRJYT3/MVW2swbvFWNLUm8OAny+zvMGAY/EdUtKvNoOO7TxRX5dVqXQ7CFJAbSdd8y7ZU479emoVHx6+wfBc6+n3+/S4B6amsb/K7CK7ifSciIiKHBHnSLrdTfab3fu0/ZqG+uQ1ziqtw5pH9ce6391XeV9Rb/tk1l/zElv+IYsVCRESZvLouqW9ua///vOIqzXWMzlBet/x7fckW8WsbCjgG/xHFisU/vO4iii/VINLt1ngvOVn1tVkY8BsmTPUZbFH/eBj8RxRnD/RP1CsNIsovwL1+QqXVQqrPMGHwT35i8E/kMF54EcVXnIN/rZdu9c5G1Pv8R/zGhq9yf4OVddEevGsFg/+IYqMCEZH3VIPdKF0sqJx2jMalRT/bT7RfX5Cc/sRX+HrtDr+LESgM/iOK9QoRkfdUg3nW1doi3/LPD94zLW0SN742x+9iBApTfUYUs/34h289EQVRkNOQ5mpNSLS0JTBy0jpPjuf1WxPxa5vQi/rHw5b/iIr6FzfI+N4TxZdqgM0xQtraEgn8a84mPPvVWr+L4go20LknShm03MLgP6LM1CuJhMTMdRXYXqM2IyXpY51ORKTPTJ7/f0zd4ElZAOb5p3hh8B9RZlqTnpu0Fte/Ohvn/2Uq6ppaPShVPLAljyi+gtzm6EfZrHan8brPv9e1tlaf/8mrt+Pcp6fgT2OXeVwaml9Shdenb0R1Q4vfRfGEI8G/EOIaIcTfhRBfCyFqhBBSCPFOnnUHpZ7P92+0znGGCiHmCCHqhBDVQogpQohLdNbvJIS4WwixRAixWwhRJYSYKIQY4sTrDjIzrc9/+zJ5O7W2qRVvzSp2tTyxwtifKLY44NcZcczz/7M35mJjRT3enFWC+SU7fShVPO2obcLVL87CI+NX4JHxK/wujiecGvD7RwDfBVAjs9f7AAAgAElEQVQHoBTAYBPbLAbwicZyzUteIcTTAIan9v8KgK4ArgMwTghxp5RyZM76AsBoANcAWA1gJIC+AK4FME0IcbWUcqyJcoaSarXZ1MKkw06J9imLiPQEub9xiMb7et7yv9PjFl+ji7712+tw0iF9vClMxKh+zz+cX9r+/48WlOIv//Vdh0sUPE4F//cgGZSvA/B9AJNNbLNISjnCzM5TLfXDAawHcIqUcmdq+VMA5gN4WggxXkpZnLHZdUgG/jMBnC+lbExt8xKA6QBeEUJMklLWmilD2Ki2JjFgdQ4HchHFV5gC7CDzOs//4s27PD2e0cUNu4+Smxzp9iOlnCylXCvdi3puTT3+OR34p45bDOB5AIUAfpazzW2pxz+mA//UNnMBvAdgHyQvDiKKFYdfOJCLiEifUbTQFvEpcI3y/LMNyTtxvGD3c8Dv/kKIXwkh7k89Hqez7nmpx880nvs0Zx0IIQoBDAHQAOBrM9tEDSsO//CtJ4qvghgGEm6I+gy/9U1tus9H+9WT3/yc5OuHqX/thBBTAAyVUm7KWFYE4AAAdVLKMo39pJMAfytj2REAOgHYIKXUSmOjtU1eQoj5eZ4yM7bBF8oVB68WHMNuP0RxFtzo3+2StbV1bK23esyoz/D790lrcfFxA/M+z9OIdU605Ef9PO5Hy38DgEcBnASgT+pfepzAOQC+SgX8ab1Tj9V59pdevrfNbSJF9Ysb7a+5t/heEpFZXgYZbs/w++/FWx3bV9Rb/tfvqNN93qhbEJEdnrf8Sym3A3goZ/E0IcSPkByIexqAXwB4VnXXCuuma0BT20gpT9LcSfKOwIkKx/UMqw3/RL3FgIhIy4JNGoNm81xwGA1ojXrLv9Hr292s3y2I8lPNuBXce3XuCcwkX6nuOa+m/jw746l0K31vaNNq5TfappfGNpGinO0n2vWsp/heEpFZUasu5pdUZS+wWCGazfMf1saWAb266T5f2CUw4RlFUNC+XTtSj+3dfqSU9QC2ANhLCKHVQe7I1OOajGXrALQBOEwIoXV3Q2ubSAlrhRgFfOuJKG17TSOe+2otZm+o9Lsonhj6+lxH9mM2209Y69vbzj1C9/lExO98kL+CFvyfnnrckLN8UurxQo1tLspZB1LKJiTz+/cAcJaZbaJGtdpgTmHn8L0korR73l+Ev/5nDa59+RtU1Tf7WhYvujfUNeXk2LA4zsBsn/+w1rY9unTSfT6srysqov7+ex78CyFOE0J01Vh+HpKThQHAOzlPv5R6fEAI0Sdjm0EAbgfQBOCNnG1eTD0+JoTolrHNKUjO8rsDwEfWXkXw1TZqJTkiL4S1JYoo7KSUaGwJVl/pGev2tPhPWb29w/NxrS+M8/xHu9uP0YBeNvxbp3q9Gcc8/44M+BVCXAHgitSfA1KPZwghRqX+XyGlvDf1//8FcEwqrWd6TuXjsCfn/oNSypmZ+5dSzhRC/BXA/wBYIoT4EEBXJIP4vgDuzJndFwBGA7gKyYm8FgohxgHol9qmE4BbpJQ1ll90CLS0JdClk7nru5DWn4HESpvIew3Nrbh85Axsq2nEyzedjNMP6+dLOYIcSAS5bLlaE9JUYB/W6tbopYX1oobCwamW/+MBDE39uyC17LCMZZkz6b4NYDaAUwDcAuDXSPbBfx/A2VLKx7QOIKUcDmAYgHIAvwRwE4DlAC6VUo7UWF8C+CmSFwytAO5E8mJgWuo4Yy2/2pAY8uQkbN212+9ixBArbSKvPffVOqzdXoeaxlZc9/I3fheHUtzO8x/WGNmoe2hYX1cYqWYHigJHWv6llCMAjDC57msAXrN4nDcBvKmwfiuAZ1L/YmdHbRPu+3gp3vr5qX4XJVZYaRN5b+22Wr+LYAnHCGlrTSRcn5fAT0bXNszzT24K2oBfctjKMnM9m1jNOIfvJRFpiXAsm5fV+tB0y39Ia1yj4D6cryoY8v3Mhr+/mFmUUhj8E4BkRTRqxkY8+ekq7GrwNyNF2LHFhojMUq0umlrb8P7czfhiebmFfuHeX31YPaL5PP8WD+Czphb9VKY8jzjvowWlGLNwS4flcbwoZ/BPAIAvV2zDiHEr8NLU9Xh84kq/ixNqrLOJ4ksvjnCibnj3m0343UdL8Mu352P2xirjDTKEKchpMzngN6weGb8CrW35LwAi/NJdp/c9n5c7CV1MMfgnAMD6HfXt/39/XqnOmmSEdTYRueWR8Sva/z/i38t9LIk5Vi84TOf5D3GF+9ny8rzPRfnCx098W5MY/BM5jJU2EWnRCoRZW2hrS0hTA37D2ucf0J+Ph13T3WH69Bzx95/BPxERhV6YurQ4JQztDPnSKBqVvTWRMJfnPwTvgRXs8++OMF8sOonBP5HDmlr1B3IRkfPiGCupBjJ+XB9ZDbbaEua2DPPHrvedZcu/sW82VOKnL3+DN2ZszHkm/zc9jvWEFkfy/BPRHnMUB+ERUXSo5qa3E4xEOZBJzvDrdynctXTLLgAHaz8Z9RfvgPRkfrM2VOIHR+2Hg/r2MNyG72oSW/4jROucE8M74UQUQ3Hs9qPKj/fI6uypyZZ/M91+whvONeqk+2TLv5oNFfXGK8HcNdXYRVvQrJOJKQoY/EdIQUzPfjtqmzB1zQ7dtGmk76Gxy/CjZ6Zi5voKv4tC1G7Lrt14bPwKfLq0zO+ikMOMAvvWNnMt/07GyF5PAKWbFpZt1K5obG3rsCz3bt1doxfh7VklXhXJFwz+IySOoX9jSxsu+Ns0DH19Dp78dJXfxQmlmesq8NasEqzZVofrX5ntd3GI2t35zwV4dfpG3PbuAmyqbPC7OC6xHuSFITy02iZleoZfB9+ENo/vIugdjS3/1ul956rqzE1iOn1dtBvCGPxHSBxb/v+9eCuq6pM/5len5w768cdxB/b2uwhKVpTV+F0EIk0LNu1q//+XK7f5WBJnWO0Ck49qlxcBgar6Zqwq9+83P2ZhKc77yxQc/dDnuuutKKsxd3HjYJAcpAw7QSpLlKTjhUzxi5wY/EdLDL/BLQHs6sNKm8h5fv6q5pdU4fZ3F2CiC92PbA34VVy/qqEZ33tyEi7829d4f95m6we2qC0hcc97i7Fhh3H/7LqmVpPdfpz7ZiSCdDrhacQVlRrBfxwx+I+QGMb+jrekOSFQJxAisu3qF2dhwtIy/PrdBaje3eJ3cSybs7EKu1uSfZ5/9+ESz49vtiuPiqB1+8kcNzC3uAq/eHOutf2wEckVVfVNfhchEJjqM0Li2O0niFhpE/nBm/pv667d6N29iyfHigK3PxVHB/w6EfxLiYLUq/7JS7N019Ud8MvTiGV67yvHUiSx5T9CChj7BwKDfyI/BON3p1oN26ougvGSTQv6OcqJbD9ODRpmkOqdOLabMviPEK3JZbbXNqGhudWH0sQXK20i5wXl/OxloGAUR9aHoG7PfL9UJ0Azw8k8/07U3UrF0Xk7mOrTOje+Z1HD4D9C8n3fn/p8tbcF8VAQf+Ne54omImBhRmYgNwVpnNG2Guf7L8/eUIkfP/s1Rvx7ueP7VtWskZM9l5O1rRNjElT2ofdd4g1k64x+oY0txt+rqGPwHyH5+vy/MaPY24LEzKRV2SkI2e2HyHteZfFwusEhaC281778DVaU1WDUzGLMdCDXuZ1W2JpG4zsbTla3TvX5N0vvs+d5RI3Ktyy3rgjO5bx3GPxHSBBbwaOuqr4ZPx81L2sZG/6JostONRu2Onr5VvvzATjZLUdz/06m+nQk248DBQFb/lWpvF2Vdcz4w+A/QkJ2XomExaUduxpsqorqTKREZBTA6z2vGtAF7a6AXa6co5xM9elAy43KBYRetx+2/LuHuf4Z/EcKU316z6t3vLGlDV+v3cG+ihRbwQmFnJ6l19HdBY7bgy+dfPta25jtJw4q6xj8M/iPEMb+3vMqq8DPR83Fja/NwS/enGe8MhFRALUGPKL9ZNEW2/twqsXe7e5SUWb0zuVO9FVW3eheYQKKwX+EhDW9VWVdE25/dwGGv79YOS1pOF+xmraExMz1lQCA6Q4MwMvFcwyReXaqWa1tg/zzc/qU8q85m5zdIZytvz5fvs14JQPrtteZXtfJLmJxsr2mEbe9Mz9rmZ0Bv7tjeEedM/xGSNAnUMlnxLgVmLC0DACwX69C/O7CwT6XyLyQvuVEZFGcfvNOB6AbK+qd3SGcHRdRutP+eK2unZxpU2Wf//weHLusw4Wa2oDf7OC/T4+uDpQqXNjyHyFByj+tYtzire3//2B+qY8lUafVctOnRxfvC0JEnvDyDmsU4j+33y4n36OjB/ayvY++Rc4EkgHvIeUru3doqnJa/juFteXUBgb/ERLSXj/kM35viMwz+rmo/p6iEOD7ycm3r67J/ozJW3eZ7z+u91WJWqYnt9np9mMm+I/aGAwG/xEShWw/qr8vv19yWO+2ZIpYnUYRFZRfmt91Tti4XUc6GZTt27PQ9j76FJm/86tXctbLajLfLqPvRG6efzOxk5kJ58KEwX+E8KRkzoQlZXj16w2od6CVx4/3PGotEERhsqq81u8ieCYM55TNVbsd29fk1TuwdZe9/Tk3yRfrebd07PZjvE0YfgsqGPxHhJQS22ril65K1dziKtz+zwV4bMJKjJy8zvb+vKgPeBIgCo5dDc7mCGf3DntWlNmfhTjT05+vtrV9q0L0r3f+YJ9/NSrn4obmNuxu3pPhJwp38FUx+I+I34xehBYHJigJG9Uf7TP/WdP+/xenrHeiAETkgaDUbl4GCn6/ZqN2h4RihOpGQ0adw90xGprtpX1UmSVYt9uPrVKQkcqMXP9Ra9U3g8F/BDQ0t2ZlzKH8nP6RawUCblfavBFAREFQZuJus9uBVb3i3DAbdujn4Z+8erud4qgF/zqrMtWnuzK7/vTfy/5Yj7Bh8B8BQZ81UY27r8XpVjsvWgyi9OkShZ3jv/kA/8CFAFaV16C6oUXzedWWfDNr91NMlamaoWfBpl26zze12uu0r9byn39ddve0zsw7l5nxx6n0rGHC4D8CYnjHihzEPsdEzolS/+F3vinBhX/7Gmf+3yTUNGpfADitUXG2VdXEDapdlVSpNMbpxfeM/d2VO9FX3DD4jwAvJ50JHMWX7ny3H3PLnMRzAsVRVGs5/XSP/v7aiyuTM97WNrbiH1M7jpEyUzyR5//51Cv2uVft8+92Y0ebwmem9/l+uqzcieJQHlUZff7jeE5l8B8BUT0phoHWhVfYKpIotVQSkTtqPcpzrtr/ulax5b9fkf7+D9unSGl/udpSiTfMXLiF7VwRJbkTfcUNg/8I8Krhv6x6N56fvA5LS6u9OaAJQQxbnW6s4+1fouCI651Wq69a9e362fcGKa2v2u3nk0VbdJ/fsKNeaX+50t1+zNTbeuvs1yt+g1D1lFTW4w8fL8VH80s1ny+r3jM/g5n3nt1+iEy6/d0FeOrz1bh05PSsHLlOUp/h198TcRQm+WKffwoDt76lS0urcdfohZiwpMzU+o6P9w3J1b0TdW1ZtXF2oIu+M0Bpn6rB/3iTn7NVf/1Pcp4AM9l69Nb41n49HSpRNPzq7fn415xNGP7BYs3np6+rVNpf7kRfccPgPwK86raRmSVh6ZZgtP6rvnKnLxbi2QZIFB1XvjADYxdtxe3/XIDKuibjDWzwu7HCaeb6/O95zWYy6ezTU63FWzXbj5Eunex9Rmu21aG1LWHqYlXvwk8la1AcGM2srfqpZXb7CcsFuJMY/EeAHy23bv1YVPfq1bl08eZdeGtWMap3Z2e80Ozzz5Z5Ise59VPPzM6ydrt+DnjAuM4xSt+4u7nNdB0RpF++E3Wt0es547B+6Nmti9I+KxzuvlFU2Nn2PloT0ly3H53nmOdfzZlH9Fda3+0L/aBj8E+hpnpCsnL+2lnfjMufn4GHxi7Ho+NXZD1XoLHDmsZWx1ujMvGUQOQfO0HwtDUVOPmx/+DCv33dntLS7u/5i+XleHtWsWtdMdO0JzR0dobfp35ynNL+0lZsrQEAHLB39/Zllx+/v6V9NdvM8w8kW+1NBe+6k3zZLkas7Ks4RoLdfij0/GggCEq9VKB4JrZy4h6zcM8AsQ9zBhvlu41/5v9OUu6LSkTWXXzcQNv7cLsu/WhBKeqb27B6Wy1embbBkX3+8u35eHDscrzs0P7y0arqnH6/DuzTw9J2784uAZCdqWe/Xt0s7atLp/xhkdnzh9lZh/UuENyejyDajN+7huY21y+Yg4zBP1nCO5JJWi3/ALCroQWvfO3MyTj3vR49ZxM2VzU4sm+iqFCdGdYqozFWZuvGjZX2ssrkeubLNY7uL5cT2X7c6soya0NysGfm7q2Wt6XNfsv/ks3V5gb86rb88yTrtspUrv84vtMM/ilQVPvLqw6gs3JC0DuE3p2Hmt3utPw/OHY5bnh1tmMtQzzHUBR4NZTW6XFGYZnl1errzmxddev1aKZttFjeBp3WYLPlP3SfIpN9/nVa/gP02UdVnLv+MPiPACt1RFOrvdtdQRmEGuTcGa/P2IhlLmVF2lTVgA0VzrYcEoVZMGqkYAXsTrI6oeELU/bMDOzWe5ObiMEptY3W9ttiOttP/ufY8u+OThm36+M80ReD/xhKJCQueW66vZ24VC+p7la9z7+zlwtGx7/xtdmOHs8NEcs+SBQqYQnx5pfstLTd7paMlv/QvFrgr1+sxrEjvsClf1c/V362rNx2nv/Glvj2R3dT34zugXGe6IvBfwxNX1dhKqWdH9Qn+XKnHE4df2eDOy1SSeE5kRK5jdew7tIK/lW7abrdlSXz4sLu/DfPTVoHIDmnzTcb1CaQGnJ4f9sz/K7ZFsxzdFBlNuzpva+ZY4Oq6uOb7pPBfwSoVsANJjMRRJGlPv+OlyJYeHeZyDlx+jmpvlYvJ1Pqv1f+AeCqE2hd9/I3SusXCLOvNU7flmDov9eelKDtLf8x/BgY/JMlbv1WVE8O+bLtxAGDdiJnmemW4nTXQd06L+C/cdU6qKXNuxc0eEAvXH78/ijsXIBB/bJTiBpl9Plg3mZbxzY9yVfAP98oyur2wz7/FGbxrj/cz/Pvt3wnCDOf+9ZduzFu8dZY5zMmcpJRFeJl63bYmH1vzjrSeLbWHxy1b/v/TxnUR3OdZ687AUtHXIAnrsqePMyo5f+3Hy4xUcr8WtvMjW7gN8V7/fbK7PbD4J9IiVvnt/RupZSYX7LTMIuDejCvHv3rtfT5eZ7/7QeLdU9iza0JXP78DNz5r4V4cOyyvOuF8YKIyA12+4nHj1oF2GaywvzDRUcZrlNe09j+/7nFyfEIWrvv2rkAZxzeL2tZq4U7ECoXdS2JhKkBv3r1916FnU0fj8zL7vbDPv8UI00OTF/utme+XIurX5yJ8/8yVTctaZxP1YtLq/HPOZvyPj993Q7sqE1WbrkzExNRR15mo0lfaMSp9Tdh8tRz9P69DNdZtqVG93m9Ro0Fm9QzF6k09LS0JkytP2t9/oHEe/foYv6AlEXvre+n0e3HzO8+ajf0GPxHgOqX0okvsWsnydRun/tqLQCgoq4JYxZsybu6eqpPyyXzjd57PXX1jrzPmT3RsrWTwqDV7BfaZUZ1SMRiBF2q5xK91vAfHb2f0r5uOevQ9v8Xde2ktO322kbjlXKovNTHJqw0daegWWfsQdSCzaDoW8RuPwCD/1hyYvIQLysmvXzHfgfzYcpbTRRmj09chc1VDX4Xw7GLZVOtjQGvX1RLp3fu6dYlO4DvnJPNoWe37G4wgwfsuTvwo2MGJMtjskAVFvK7q3T72VTVYPuT49gRd+zVrTO6dEp+txqa20yPh/M71nCaI8G/EOIaIcTfhRBfCyFqhBBSCPGOwTZDhBAThRBVQogGIcQSIcTdQoi8l/BCiEuEEFOEENVCiDohxGwhxFCD4wwVQsxJrV+d2v4Sq681kHxo+feSXnFVf5CWUn2G9Edv9mMO6+uj+Bn+wWK/i+D878XH+vi9uZuQsJF8X73lP/9zuZnbnrn2eNP7HbMweXc4O89/flYmLFNPa6p8iCxbq7XvTrS0JfDU56sw4t/LXZvZOIzM/iwFBPoVZfT7j2muf6da/v8I4A4AxwPI30cjRQhxOYBpAM4GMAbA8wC6AngGwOg829wBYByA7wB4B8ArAPYHMEoI8XSebZ4GMArAwNT67wA4FsC41P5iI7MVwYlzjWupPhXXj0OXFb2TCAN3ipOlpdV5n3M6BWeaagus6dUD0Ajz+4+W4tNl5Z4dT6/lP/fzu/jYgVl/3//j7EHA6YA/U9budb4OW3buzv+khuMP2tvRLk52vPNNCZ6fvB6jZhbjqc9XuXKMMFJ5t3O7/oStQdQJTgX/9wD4FoBeAG7TW1EI0QvJQLwNwDlSypullL9F8sJhFoBrhBDX5WwzCMDTAKoAnCylvF1KeQ+A4wCsBzBcCHFGzjZDAAxPPX+clPIeKeXtAE5K7efp1H5jIfPL7cTtxMDcklRt+Xc4PgjK20AUB3q/38DUSSa1Zzbz+Srg0fErLG+rWna9uwwnHpKdrrOgQGDVoxfigR8fhVduOhknHpz9/PR1FVl/t7YlkB375/+ylFTVmy80kuNNVF+rW5/qq19vbP//O9/kT/gQZ0YNZpnpPistdAGLAkeCfynlZCnlWmmu9r0GwD4ARksp52XsoxHJOwhAxwuInwMoBDBSSlmcsc1OAI+n/rw1Z5v0339OrZfephjJOw2FAH5moryBZ67vaMb/A3yOVD2Be9HwHfXGdbdaTInCqLKuKWtsQW6VZFxFOVfBBrmutkKv28/gAT07LOvWpRNuOfsw/NDEYOBPFm1FSeWeoF5vAsjGFrXB48u21Ki3/NvoTkXu0sr4YyRqv0U/Bvyel3r8TOO5aQAaAAwRQhRmLNfb5tOcdexsE1mZtyAdGfBrew/OMBO4llTW43cfLsY/Z2+KXDehaL0aIn163/fcuuC/XpqFhYopHUsqG3DGE5Nw9lOTMXVN/kxaTgjKnQo7dx6c7ApjVJcZVfUbdtRhW034+m/PXF+hubx7F7UMRmRe34w+/1Xs8++Zb6ce1+Q+IaVsBbARQGcAh5ncpgxAPYADhRA9AEAIUQTgAAB1qedzrU09fstMgYUQ87X+ARhsZvsgyOr248gOndiJ/d3qte6k3frOArw/rxT3j1mKFWX6uaGDKBghAlG4zCmuwlUvzlTa5g8fL0VzWzJH+9DX5wDo+Ptz6kbZngkNndmfF1aX1+L9eZtR19QKQL0hSa813Oh9zU3r/Mjlx2T9/cKU9Vl/b1bs12/ErZTa178yW3N5vgnAgnLRGDQqP0sr3X6idoPcj+C/d+ox38it9PK9LWzTO+dR5RihZaYucL7lPxgVkJmW/JUZAf8mC6kCF+sMMgwysyeJiNVpRO0cmdPErQG/IXTlCzPwuw+X4P8+szbQVK8njNH7dvg+RThy370AABd9ZwBuOmOQ7vqjdSZAtEL1nLd2e62t47UEZF6LsMjq2qzzWQl07PYT5d9sPkGcPzodi6h8HFa2Mb2+lPIkzYMmW/9PVDymL5paE+15lJ05IdrfhxP79eJqfFuN+oQwXolaawSRniiNTwlKwKFSjoZUTvS3ZpXgkcu/o3ws/Ww/+tsKIfDhbUMwv6QKQw7vb3isLp2cbdtU/bxufnOe8UoOHo/M40Rf/rT857bS5+qVs57KNukmXqP1je4MhIqZOqK6YU8+YCfqFLfGMmldseuO3O+wrvMFO3/wvnmf86KC1ntNThw/QvEURVy+r2oiIbFo8y5XjulKi1Lm+nqt4Yr7ssLOMZzM829G7+5dcN7g/TpMCKblzCONLxBUuJW6M1PuxGbkjuxuP+zz75XVqccO/e2FEJ0BHAqgFcAGk9sMBFAEoFRK2QAAUsp6JOcb2Cv1fK4jU48dxhBEVVHhnsoyUqk+c7hxUdJdcer4oDDbSsrTDYXdw+OWWwr+rdRjTlV9QalBd9R6F/x4ed74wVH6GYJa29S61dQ3mZsJ1o7OnVgbeyF7ki9m+/HKpNTjhRrPnQ2gB4CZUsrMGklvm4ty1rGzTWS1Zfb5dyBCdm2SL9VBVTl/O9U6U1HXhOHvL8aj41dA8RzhqSjlPScylOf7/uasEuVdSSnzDrbMXk9516aPb+SS577GAsWMRV5SfW/aPKyT0uMD8qlpbO2w7I5zj8i7/pziKttlMtK5wDgkY61ujxACfffKmeTLx/L4xY/g/0MAFQCuE0KcnF4ohOgG4LHUny/mbPMGgCYAd2ROzCWE6APg/tSfL+Vsk/77gdR66W0GAbg9tb83rL+M4DBzEskcO+TEFz2ocWW+DAmqHhq7DB8tKMVr0zfi3dn5AwsvBj4H9K0mCrXlW2swa0Ol8nZGN9TM1o1mJvnaWt2IaxQzFnnJyUm+nHTWkf1RkNOF5r6LspPzad3xGP6j/AkAS3eqJ4tQlfvd4lwB1hj9BnsWdkaX1F2WhuY27G4xvqsTte6xjgz4FUJcAeCK1J8DUo9nCCFGpf5fIaW8FwCklDVCiFuQvAiYIoQYjeSMu5chmdLzQwDvZe5fSrlRCPFbAM8BmCeEeA9AM5IThh0I4C9Sylk528wUQvwVwP8AWCKE+BBAVwDXAugL4M7MCcOiLrPFxczJSUpp0G0kmJWSUxclE5fumfJ++VZn04O2JSTqmlrRu3sXU+sv2ezu0JQoDaKkaHPym1rT2GK8EvzPbOZ2/Nenh7l6yAleNRq9ctPJHZbl3gmYuLRjFnC9uvCNGcW2y2Uk9+itCYmuORcxrK3tE0KgX1EhylPJPKpi2O/fqZb/4wEMTf27ILXssIxl12SuLKX8BMD3kZzU62oAdwJoQTJQv05rpmAp5d+RvEBYDuAmAL8EUA5gWPrCQmOb4QCGpdb7ZWq75QAulVKOtPxqQyizBcFM/Wt0wglqg4QXg7Ls2N3chvP+MgWn/PlLfLG83HD95Vur8VSTEvQAACAASURBVN+v5e+aoJfq1Ow7wdifYslsC73U/7vjbsOVGtTLwzvd7Wdg726ay7UGBJ9wcJ+sv1+etiHr7/+75jgAwIhLj9bcpxdjI3LfnVam+zRNtZtr3DP+OBL8SylHSCmFzr9BGtvMkFL+WErZR0rZXUp5rJTyGSll3vsvUspxUsrvSyl7SimLpJSnSCnfNCjbm6n1ilLbfV9KOd6Blx0YZr7ymd1hzPxIjNZxrR+syWX5ytHU6m1lqfo+/GPaepRUNqC5NYFfvj3fcP37PlpqsWREpMf3Bgy/j59ipy53coZfK23ab/38VNPr9uqW3dFhd0sb9uu1Z+DnWansQMO+dyiKn7wYxU9erFwep5VVd0wzHZCvTWilG7syM/5UMPinqFKd5MtoDb9vhefTEuTRuQBKc2adnLJ6u+76Rq9Hr9Xe7KmUDf8UFk52UfO7DvP7+Gl2EgOobul0Q/aR+/U0vW5njbz/22r2tOabmTBSy9EDe+EHR+VPB21Gvr79y7ZEIht5IGVN9GWi24/fd+icxuA/AlRn+DUTHxtdILj2Q7C536DnSc4t3bA35mJXgzutDhGrq4gc7aLm2lwlit2J/P6d2svzrzjgN8ARlErZ+vTogvd+eTpm3nceJt51Fl6+8WScdWR/y9/Ptjxfho8WbLG2w5gz81H2zUz3WceWf4qozEGrZlqcjPu1ukO5v2zO+l7fynficMu25B9QzMG4RO4wG7h26PPve7geHKrvhF6f/8LOzoQjs+8/39J2tRqpP/MpEAKnHdYP++/dPfl3gcDbN5+GtY9dZLCltuKKes3l09bssLQ/MtZvL7U+/1E7FTP4j4l12+va/+9E40tQc8gHtVxucaRCilqtRpHl5DfValXh2CRfLlRVz09eZ6Egzpcj76HyHOvYA3rjmP17OXKMfXsWGq+kQWVwbb4qU6trkRnrdySDfzMfRcxOcY5Lf3RZ3X7Y55/CyExL1Dnf3tMn0dS8AH4N+LW5X98H8Vlgp9++3vtl9r1k6E9xZLYFv+PdRYO6UfH4TtalT32+GlMVW4u9rDI75emW+fGvhzh2l9Pqfr6lMH7A6VpzW03Hgb2kRvV7nJntp3q3ubS/UcLgPzYyB/yaWNvhdHZ2qLTme92nVPVOg9Z5SW8XXjTKs+GfwsLRAb8WU306paTSnUmjPltmnELYKarvzbEH9NZc3sViizkA3HDawe3//0PORF4qtMqQ726E3tCy14d1nGPASL6LInJPv72s3SGKCgb/EbBhh3Z/wUyqSXDqmvT7P3qZ6lN3/ZwNgjygLJ//fm02Xp++UfM5o1hH964BzydEeVm9S2h8V9TcjleV11orgMPsdZW03/hh1+8uHIwbTjsYt5x1KIZ9b5Cj+771+4drLm/V+fKc++198fiVxyodp6E5eb6NW7dVt5hpnMzs9mNqnxH7aBj8R8ArOZOVaMnM829mRseuBi0xQe1eE9Yf6CPjVzh66/cvX6zGr0zMI0AUV6YH/Ob87fy8S36nHLWxrcmN65vSwa2Ng+XRu3sX/PnKY/HAxUejsHPHyb0y/SnPBF75/PDo/TSX6w0QFULg+oy7EWbsaohftxO/pC9A++6lFvxHDYP/mMhO9elEn/9gRtleF8vJw+XOAQBYyz29bEs1/j7J/MA/q/mtw64tIbExT5YNCiYnv6lWGzCCWfNZZ7XObG5NmH4vVDLpuGnYkEFK62vNFGzWP39xmul1P0111dJ6P/PNAUD29CzsbNjIGWXxfeUxkxnwm6lLjNYJSnXUoVUuoBclaaqBtmG3H4395etOML9kp9Kxo0xKiWtemolzn56CJz5d6XdxyAdm64rcho6Fm3bixtdm49Wvje+46jn5kD6p/dvajW1Wx2+pbFdQkN7GX16mTh5yRH8899MTTK176Xf3B6D9XdBLj0oZFN8mIUTWoN+4YfAfAWa+89nBv5k8//5E/3bvKAQ9+PfT1S/O1JzJMI5jA5ZuqcbCTbsAAP+Yai+II+84+V1dtHmXqfVmb6jK+vvd2Zvw9doKPDZhJdZss95vvyAgPzw7Lf/dDLrZOHYwl71840mu7Pey7+6Poq7G71HpzuTgb60LqvS5W0ppKh89mcfgn0LNzCkkM/g31+1H/3m3sv3Y3WvQ75D6fb6fsLSsw7JghCDeqm9q87sIZIn6t/Xhccs1GxWaW8113v/Tv5fnfW5JaXWHZWbjW7caKqau3q60vtVSrCyrNV2fTVxSlvdYxx2onQHILR/eekaHZfn69gPAI5cfY+t4A3p3M1xnn9TcBFpfiXSXqVvemo8TH/0PynPGhpVXNwa2G65f9N+OPV/afjHu98/gPyYybx2auY1odGIKapDtdSXoe50bx8idSMEbM4oxZbU7M6XaCeBlzqNTtlYrJg6wWIC6JvODVNN3WbTerzvPO9JaASw6eVDfDsv0ugP918kH2TqemTs8+/bMf4GwYNNOrN9Rhy9XbtN8/vQnvsLPRs21XL44U8r44/e53mEM/mMic9CQmQFEYZnkKzfY9+KiJOitLLweoKiyeudMa7yL1T7/Zp8zEpQuilbLodJtae8ewWph/e0F327//9o/X6S7brcunfB3k333tZh5nx4dvwKAdnxZWdfcni0pnymrd6CkkskLVPUtim+u/85+F4C8kdnar5ejOC1Yk3yZX9eLE2pCAp3a6/NgnMDN0joN+d0VichtWvWV6eBf5zmtqtRs3RiUu6dWi9GnR1fTdXNNagZVrfX9qH5uP/cI/OKsQw1Tg6Zd+t39sWxrtaXxQYf064HVBmNDuqezCmm8P6vLa2AmKU1Dc7y7MlqJSdjthyKvsm7PQKEgt/xrHkvhR+1N8G/9GH5PyqVV8jim+vTy4pX8p/WTdWKG3z98vBQz11XYKpTfdxKtHr9ZYebI6t3By2NvNvBP+/U5R6BnYbK9VGUSLzMt/zefeSgA7XrpzVkl+P1HSw33EZAbSYGX+XGoTvQVJQz+I8BM0PhI6rYiANSZGOwYpFSfepVa7lONLY7PwNNBZvDvdoW7sqzG3QMQhYjVy1TN/OkODcy9/tXZ6gVSOL7brJajpTVh+iK6IpVlTLPlPyRtD727d8H035+Hz+4+S2kSrxtO37PuJccN1FznzZnFdovXrraxRTOrG3XEbD8UeZkZfl6fsdFwfcPWbQ+bGVROTqqZLqzwsoWlpU39YLp3F0wvJAqHVhMt0Nq/WfvdfswfS2u/AYn+LWpqS5h+rYtTWZHC/YqB3j26YPCAXkrbnHlEfzx6xXfwy7MPw8OXaWcOqk316bdS36dJSGyuasDpj3+FM56YhDkbq4w3irl+e7HPP0XciQfvrbS+0a1gJ1utunYqULqFrOfsb+3jyH70ZF5I+X0yY9xukd8fHFmidWFrJpOPZp9/k1WOmQBXSqk8gVT6+GH9KppNlQoAPznpQAD+d3HygxACN55+iO463z2wN2oa7XWNkjLZDa0+1ff/v1+djTUGg5njTqXbT9gv1nOx5T8SjE86V5xwgNIeDbv9OFiJG50zVX50ZifuSbMydbq9cQXuh+t1BpkhiMJKa3xKi5mGAxsDc82E55nViNnqYf2OOpPHD6aWtoTpd3DIEf3yPheWbj9uOu2wfmhssT9gd1NVQ/v/nWpQCwuzv7vMr1tfDvglymY0EZiT18BGA6J0f9Q5zz02YaXSsSvq1ftGZg6eVr0OcPtEN2t9JR4am39SIi1BmWnUS9FqwyEjdvr8m2nhNjNxYq6m1H7D2hje3Jow3QjU1BLu1+q2VeW1tislvrd7mH0vehZ2RlczqZQiKJ6vOoZUW7iNWrcfHrcC9320xJE7AIYt/y7WaqvL9VOwadlWoziJTganw+zcrgY/feUb9X04VRgil2nVFWZqB606xOwdvJpG4ztpbmcZ+9kbcwLXZUal288bM4oBaN9tiWO2sVzT1uwIzADwOBFCxHbQL4P/mNi8c7fS+mbOM6PnbsZXK+0PsM1teR67aItyWayykh2oqNCdoTKenAI1oqcYNvxTzGgGVg7WK1kZwJzbbbvJq3dgsgfJDFQ0K3T7McpzT0BrnkEo6fES5I645vpn8B8Tr003zvCTyWxL1hcryq0UJ0tu7HnX6EVZf7vZIKLVmjZu8VbdbfpnZAhQbY3TC7StvE4n4vY4dvuh4LM7ANKIk7nn7bTamt10yy7rdxzdkOz2o7ZNwG5eBEq+rmM7G8x9TyUkG3JMyL1bzpZ/Ci03fvBmT2YVGf3fLTPs9mP/EPlozYp4578W6m7jxURiXorjCSNiH2EkPT9pXYdllvP8a3zeX61yriU9KwNYTL5cVgaUar0z9c1MUADkD/6/XLnN1PYx+do5zmzGn6i9vwz+Y+L4g9RSfe6szw7ql6byNOc6amBPy2VKMzqh62XlsJt+y8qJx84tfr3+rX7F4KopCom8sLPBgYaFFLcv2K1kDQu7ZJ9/+6/byrirKLL7TsbvG5ifSlwQ11z/DP5j4ns6qda0lFTWt/9/0qptuHTkdM31Fm5SS62ppaDARrYfm6zc+o9cCwBjfwogrQvloF6oZl5caN1N1GP6TkHAKp4WhUm+0rRe66z1lQ6VKNzsfrwfzNuMksoG4xUpC7v9UKSp3qEdPHDPLIY/HzUv73obK+rzPmeWccu/e/69KLt/v5kTcVbLf8BSfRoeX3NZMAMqN0VtwhbS53ZXnDXb9uTsHzm5Y3clLUVdO6kdxO/KI0dxhXqgqfUxzCvZ6UBpwuN/rz42T4OLve/ou7M32do+7Kzk+QfUJvqKEgb/MaF629vsbewLjhlgpThZDAecunjiPnzfvbL+NvOy3brD71erZsBiCqLQWVK65w7ojlpzc4eEvafQhKVlyuGq1vqnH9bXieKExrWnHIw5D/wAbww7JWu5I+PnSBm7/VBomYmNxyzcYrxShjYPbzEbBb26c3zZLGZtTg5vMxdJ2X3+FbP96Dzn10DB3DLFZcAiRYOZr2ury5G2lfpStUEmiNfoTlQVxx2oNh4tCvrvVYiD+/XIWnbdy+pztJB97PZDkWa2NSrN7IyVLQ5MIe50w79K8FqdM6jQzKaVEW+hCXuLJEWDVr2gPcmX8RfW7UGlVoLgqGUNsyqujQ1xnVnWCypfKdPZfiyWJaj47SNNZk9ME5aW2T6W0YBT1dZ1lQud3BzKZl53504ZBVbu8+9s+50Tu8t9CXEISmLwEiOptrG1Q5dEMxerbvcrt9IgkC636b7KLjb9Ww3AVbeLa6CvxUqqVLIv93fESb4oxJyvUM3WS05MlGM04FS1JVpl9V0W0gl2KXDnZxOUTCZrOBsnBVT17hb88JmpaGpVy6hjldmxT6/P2IiyarVZ1M3eXbXDbLBttSxO9PkPSr3ntUH9ivwuQqRY/TXtVdg5lndh4veKyRSzJwMnGnKcrvtVypSZ1Qgw1+qdOQ17FNuxqk3OKEnkh/U76vHWzJL2v91sTW5JmG+dfXT8CtfKAbiblcvtMRFpWh9VYed4hiFMsRwMQohY9vuP568u5m447WDDdbzs+lFWrT9tvV5R7Bbze4f3z/rbzDnQzonS70YuM8f3crA3UT5631WjOsMpKi3iFbXWxgK5kXZW9c6I1bFbZquK8wbvm1w/57V279IJvzjrMEvHDju/73h8OL8Ug+6bgIfGLvO1HEFgpuvP7hZv7jZ6hcF/BKjGal1M3OLy4pa0WW627D3z5RrlY7W2WS/PAof7Hrtx+vCqFdBP0X+FUZD/2+3VXfqw/hbWlCfnHTBbdabrNOU+/CZ/SelW7tzdT773HPTu3kXpmGRfIiFx7weLAQBvzSrBqvIan0vkLL1vpdYdNDMt//+cXWK4Tpgw+I8ANxoQVFr+G21eER+wd3fd5/VK4nQrtbmW/z2tZBV1almUFpdWqxbJdblvYRwG5cXhNUZZ5qzgbn6UZvv8A0BlvVpd4KZ9eqrlLk9f5CzfqhYEqnYPzf2sBvTupnS8OOmhOgmcgoWbd2X9vWGH/ck6w8xMxp9/TN3gQUm8w+A/Atw4+am0br82faOtY3U3qOT0ArUP5pXaOrbKsdIyWwPd7ufrB4VuzkS+6ORRlwmVln/Lg2ZdyPbTqvgjTq+v2v2nsYWVhVtm33++a/uua2rV/TuIjFOCWw+EzEz0Fda7gPkw+I8A5YwLJn4kz09eZ7pF/wWT09nnY5jqU6e4X67c1mGZnbsBpiYMyrgwiuKsjOzzT0FQurMh73OZs4K7eR2g0vJvOFO5h9IXImZLn67TzHQJzdTQbC5oZI2irmc397pDVeSkw/7dh0tcO5ZTirp2dm3fHPBLsWCmj+WGinqMmlnsfmFgfNJUPXH06ma9kjDT3SnMA3/MZAxRCXiI3LJEp4tcZoOBm9eqKq19GyqsdZ1wo/wtiuOS0i3+WXOYmFDfpFYXsrudOcfs38t4JRuGp/r7h4lT2ZG0wg2zE31FCYP/GDLbuvPkp6tMrWc3a4HR9l6eL8wc6k2PLoq8kjtoLw6xfwxeYqRl9fl38dN0O/HB9hrzWYtUalnVcVjpi5zOinOYLN9qbgxTOujn786cdHYkuz5dWoZB903AHz5earhufVOr7fF7bqppNN81SfUi89RD+6oWJ/QY/JNtdi/InZ7h184JxkzL/9lH7mPjCMHHbj/GFm/ehUP/MAG3/3MBWzNdotcm4FUXG7eDfycmSdQybe0OAOaDoHS3H9XW1fFL1GZ450/FnDMO6+fIfm57dwEA4F9zNmHZFv0LtWP+9DkGP/gZvtLoSht1h+2zF+7/8WC/i+EpBv8RoJ6eLVg2V+Xv2wu4e8IYPKCn8rFWlrmTFs1KOONGruj9Y5CBw+67dvnzMyAlMGFJGT5esMWRMlE2vd+iV91+rFwI79fLfKadxpaEK3cujOrUXKoDhNPMXrzI9segnX38Nf7OMzWXnzzI+Zbon7w0y9R6N785z/Fje8HuN+vEg/s4Uo6wYPBPvlO5nee0VeW1WX+bOdd/trzcpdIEQxzybjt50RTG/rNhV+DR9KhWWv7PUrgzWFToTjrHHx87EID5gEh1jIBVbPnP9p0DendY9sU9Z6OrC7Me725pw7rttfhyRfxa9s3obKI79PS1FR6UxBsM/mPI8QrY5fOwl90qzHT7+c4B7g7GcpNWzJv7kuPQ599JV514gN9FiB2vuv00NLvbB1olu47KS+6keHHUanGGX7PSdcx+vaJ/V9Gub+3X03gli37w12n4xVvhbNk3kvmNt3IK62ziN/Pfr822sOdgYvAfE4UutCR4RT2VqfVjmQn+L/9utIO9ONyad7LhuHsX9ybjIW2Zef7dbBt4b+4m5W1UyrOzodmV8jcoZuFpVUwNatXlx+/f/v+ehe6lbgyrF2440db2vz7ncIdKEj52v7uqma7CLrwRIbUz86Vvat3TsuN0cOf2T8bTbD8mjhWk4NiN914vxWJUmEl5apbbg0Kpo+xsP+4Z1K/Ixb0DGy2mBzXy6vTkbKRm6063JzBK7z3zjsTVJx3o6jHDYsmIH2HI4f3w2wu+3d5dK+2PFx9lah9v33wqVj16IX53YTQHrXpx97+lNV71OIP/CDD7u6hpdCezhNu8DLbNvJeZd8ivOiF6dwGWG2SFoGxRm/kxDDzq8o9lW/+/vfMMk6LKGvB7JjHkDAJDUkSigIAkAREDwZzWnHVdcVfXXXMOIJ85rLvuqmvYNesawYgkE0GiSoYBEZQgmSHMzP1+VPVMd0+Hqo7V0+d9nvt0d9Wt27f6dFWde+6557hf3O/mfvXz1hLHdd0MWL9bvcVxXYASO1lXsnUs9fmvSr3CfF65vD9jhnWosu+sw9s4amPwwU0pTOAMZHm54bdd+7jo+Zl8tDAwopMxxnFyt0SRyP9NOPe5pb/uCL2jmqLKfzXA6XWxc09qbvCJJrVx/qN/mb9rUOcWmeX/H+q+F3zGyVhs5jUS6TK+PUnhGpXwzFz1W0q+Z7odMtMVLu5X3xVvSYpp4w9D3bl/PD11pf0uOTdbDYcbG3XS5Bo1YPwkDrv3M6Ys2cgfXp5TET1qb2kZwx+ZSpc7PqkICZoK2aYi/HTrRrWS/h1eovo/5bMApxef29TtTklGuEl/UmlYdfJd/laPRM5KhPoZoy0uTsZPc2zXA5LQqrdI5D/2U42ekXI++r4y4tYyhxa7XXvdWyt3JjkSWahoL4mgSV0r3KjT+9O8n7YmpR8+dsbw2ysW/4hzHUAs/Lp9b8DnwQ9MBuD/PlrCyo2Wq9qlL86m3U0TaH/zRKYtjWGQ7AK3rpWRVKJwM2iHJHGhtRdR5T+L+HblZsB7cf4TTpIX/L70zerKr0rgjxmqrQY1U592PFUuFWklG84xSyhxmJW0NIZwlrG4dLk5onur+s4PcPGf3bRjb/RKfoy2fc0jGXLuO7kbD53Rg3qF7q3Rc9dYg4tq/+xJAseFMMa8clm/ivcn9GhZZX+y+PdXq0Juv+DfM2Nqb83m3ewrjR5pysl16P/8jGQQDfcXz9UFv0qmEfw//0OYFf8tG9RMQW+SQZIXo/n9gE6U+R17/C3/ySXhi7Md3N+ywYU9kQt+nbJy405HDzolOaRi7dD+snJXbhBuFvy6+ce+N3+di9pQ14FCn58rnN67iKnXD3PVdjhSFK014wnOaXFCj5YM7NCEsad045JB7bnj+C4B+x84/dCk9GOPw0G2Uzre+hFDHpxMx9s+Ym9p5LbLXA7cY3mGOQn1WZ1Q5b8aEPxQ+9e0lWFq+g6orN8qAQOCZN/EY0w+6bx9hxYDf3wL9VKxECkSG11a+JxQng3afxDx+K0O6tA4ap0nJy3jqIenMvLxaRodyCFOZeJUdHOT7NoCzmchfIyduCgp/fBlK3X627w266eo9X2zAvFYSNX3Pzb8Q3g+eXYvAM7t15Y7TuhC07qBGaWTlal2+YadCW1vn1/kjENu+zhiXScZqP3rRDKyhHvOqvKvZBzB99NwysUb9g3en5wM+Ack22K33+8m5FQvGzT+CyCxfQv1XIz2rPxyubuMg6Es3sEP5GTppl4eVMSjkzhJOPXwZ0sBWLFxV8VCOSUyif637N2fmlkX13lJknB/S0bmYN//PNacMcHXfzpm3zKVG0Z0onj8aIrHj45a141Bz02OkhlRFtlHGti9NnMN7W6aQLubJmCMYcuufY6/F5z5/F/9ytyKDLwvz1gdtl64/53bxHiZTtpUPxEpFhETpvwS5piBIjJRRH4Tkd0iskBErhWRsP9gETleRKaIyDYR2SkiM0TkwuSdmXfxuf34X0aJuAFnepz/Zb9WWjTcPoj9+9aodnz++V5RjRNtndtbWsbp//ia/vdP4rvVqYnSEo1gOTtZ6/H3KcsZ/cT0Ksq7259roYZSTQutG7mf5bx8cHtX9ddv3eP6O5ziJrDCf791n5zMIvyf2acb1cgL/bjt2LxOxJZXbkqs5VgJTc0C5wr9i5cc7rjuvR/+GHH/9GXhDVE3/W9hxfu/vDE/7NqBcOx3aDjyZeDdtDP8jHi4kOdOr6//fruaq1+Zk/GhQdNt990G3B2iPBRcUUROAqYBQ4B3gKeAAuBR4LVQjYvI1cAHQDfgv8AzQEvgBRGp8h2ZilPl49HPl1bZlgmD3Te/W8tL3xQ7ru9agferH4+LUa/WDWI/GGcKaCpItIH+2emrmL16Cxt27OX0p79JbOOxEnSO0c75p99288DHS/hh3XYufXF2wD63sy+/bEueglidSHTm5P9+G2gN7H9go6jHPDPdnZKydstuz4RSLi1L7ExHNN2odcPIoRKPfmRaAnujxEubRrU4sGniktj9uj30fW1dUC6L/839mdWbd7tq281/ud1NE5hVHD7PhdtZh2Bue/d7PlywnvOenRFXO+km3cr/VmPMXSFKgGIuIvWwFPcy4EhjzKXGmOuBnsA3wOkiclbQMe2wBhG/AX2MMWOMMX8GDgVWAH8RkQHJPsFU4FZp9K/uxGXBC9zx3g8B7jmJpG5hfsX7eKbg4/0pQ1ncE65IOFrwm9gv/dEvUZJXFKPgbkST+09b3D2sIjG4Y9OEtVWdOdthgiOn1+yrMwPdHls1iB7X2234v7aNa7l3+0nSNfH+/HUBwQni7Uu0Z4Xb+1+GPHqqJcXjRzPthmE0qVMjemWH1CrIY8KC9Yx+YjobdlQOBAbaLrL+vB9iQXqk9Wv7Y4jUFY4lvyTGYr8hCevtUkm6lX+nnA40BV4zxlSY3Ywxe4Db7I9/CDrmEqAG8DdjTLHfMVuAcfbHK5PV4YwhATfgZMf59xHrQ7IgSn4D/0GF2+/wV9jj/R1O+8c3bPNAwqiEz0BkwEM+lYOSkhRnx/QiG3fs5d25P7Ntd/j/u1O/9Vhl58S9rZ+D2QF/YlEI3MbAb1grP3ol4Lo35tN37OeO252zJnLCsej3t+gXulcG/9Wdh8/oUfF+/p3HpuQ7F/68jTGvzOGHdds5fOwk1//rSLkCEhklLdtCeoYj3cp/DRE5T0RuEZFrRGRYGP/9o+zXUEvCpwG7gYEi4j+MjXTMR0F1Mpp4FpglwvIfbwv5Di/GWJXSaO37T0vGM4uSiFvK+I8WJ6CV+MgG3T/4HFPpcrVgbXb7/BtjOOtf33Dt6/O4+IXw8cGTMSv5m9+UvxOJ++f0cMI/p650vWbGaXXfr5GshYmn/v3riAsrE/2tXrwvVBdO613EynGjKB4/mvo183nryuQ7OTw9dUXA5253fuJqjddf3pwfcH36Ey0UqBs6NktcMq8Fa5MfQSxZpFv5PwD4DzAWeAz4AlgmIkOD6h1iv1ZxWjfGlAKrgDzgQIfHrAd2AUUiEnXuV0S+C1WATtGOTQlB9+sOzSIvvPLHCzfg+jWdWbJizRIZTYl49LPKv4hry7+L73HC1ysC/ceduDQkOopOokNRpmpmyA3Bv2s0uZfsC//wiZaFOZhvVmx2Vb+6sXHH8F38pgAAIABJREFUXlbYWULnrNkaVll2ej25+bde89pcwJrte2fuzy6OdEZujrg2xsRjcEg0kZSZaLOSTsSVilwLioV/foA+7Rrx2O96cvbhbVh0z4iAerNuPTppfTjtH+7WeB1272cVUYHa3TSBCQvWU1ZuEur2M/SQ8G6Xk/96JGcf3obHz+rpqK3/zUn8PSRVpFP5fx4YjjUAqA10B/4JtAM+EpEefnV9OdDDmcx82/1XXDo9Jjn51VNI8A012j3Yaz7/Th9msdaLdpj/fjcPYmNMoOU/zE/pRjmP5cHuKgupg6qJtoKHM1SWlZuISnUymLx4A6/MWFPle0Od8/6ycv4+ZTmPfLY0rEUK4Puft4fdF4qVLhI7pZPVm3exI0xkjHgI/rt+HWYwlAwDty8iyZX/+S7xjQPzYsglsNdDid8i3UqiGQWciGvtlspZVg88erKKk3u14v5Tu1eJBtS0bo2wYUSnJSihW6yMeWUOz0xfmVC3n/wIbsDtm9Tm/lO7c1LPVozqXjWzcjAvfF2csH6lGvd5uhOEMebuoE3fA1eKyE7gL8BdwCkOm/PdRtxoLY6PMcb0DtmAZf0/zMV3JoV4LKuJuAHHvdA1/i7Ehf/CQjd92bO/3JEL1daS/Y7DgMZiGSstL6fA4Tj+lxARGZzmiYiV3SEU/G279zP6yels272f5y7qy+Ht3flWx8LCtdu4+IVZABzeLvD7Qp3xqzPX8MDHSwBnGVCrE+/PX8efXp1L3Rp5TLthGA3jDGPrT7BSv3rzbgZ1qFrPqXtLLGPVSYs3uD/IAb/t2ud6ke2a3xK3mDxeIl375/SrvE9ePKgdz39V7Lp9t25USnppVi9xC4JjZfxHi/n3RX1S/r1/OfYQJi4MGXW+WpBut59QPG2/DvHbFs1KXy+onptj3JntPMjwTs0CPkez3KZb2Q7GcSbPGHserf3C/MrLwI2/7oxVmwMVj3CWf1ezCZE/h8LNlOgjn1UN9xrMm9+tddyeEz77sWpSq4c+XcLaLSXs2FvKmf9MTfjP//u4cj3FzOJAX9RQMxB3vPdDxXu3Cl2m86dXLfeYHXtLefDTJQltOydIqQ83u+DUqNG5RXgf3qM7Nwu7L1lEWrgYD1ttt5tk3r/D3f8uHNA2wGJ6br+2VeokKxqbkj7CDcCLx49mxbhRKevHvtLUay0HNa3DRQPbpfx7U4UXlX+fScY/AK3v6dMxuLKI5AHtgVJgpcNjWtjtrzXGeMfsEiP+N+Wz+rZ25QbiCbefBFfcGJTgI9ph/sqzG6P3F4s3OPL5d/MLx2LFTLSlPhW5H+asCR+HOVlE+qt/tHA9D32yhA8XVA1B54T120qiV3LB9GUbuX/iIta4jIedCPxDswJs2J7YkHbBg+H7wyxyj3ZvGvHYNKYs2UCDWuFnJY7tWnXq/h9TVoSo6Q2aR7C0jp0QOclSIgjn1z+oQ5OAz20bV10qN3mJu0GPF9cCKYFEcpHJzREGH9wk7P5Esi9NA8u7TuzK1cNCTEtWA7yo/PuWpfsr8r5AsSOoyhCgFvC1Mcb/KRXpmJFBdTIa/0dpYX4upVEswYleMLZp5z4u+PfMmDPDOj3MqY7rs1o65YP56yr67uYUahbkBhwQ7vwL8pJ7mSU64sDIbi0S2l7fdg0DPpeXG35Yl7gJt22793Pvhz/y7PTASCulZeXs2e9sTcFdH/zI3yYv5+pX5rJovfu+/T7Ih9wYw01vL+DgWyeyzGUmyM0793L+czP557SV/P6/8fum79lfxqUvzOKEJ79k+Ybofbnw+cAIPGXxZL4LQaLuP4t/2cFFz8+KeN8Jtc9/BshrNKodXvlPdPK9UDz0aeiZweDvzs/NiTujueI9zuvvLLeGjxtHpCbmSSJ9/t1Su0Z4l88rhhwYdp/XSYvyLyJdRaSKk6+ItAX+Zn/8r9+ut4BNwFki0sevfiFwn/3xH0HNPQ/sBa62E375jmkI3GJ/fJpqQGCsecsH3Ck5CfoHTFu6MawFLxpOBw1O3WcWByXxiHbY9GWbuPP9H1x9B0BZWaAjUrgj3Tyzg38LJ8e+OnONi2+ITnnQgOaD+et4ecbqmMOtHRdkfY2Uej0WLn5hJs99uYr7JizimekrK75j6INT6DduEvPtRZj+iw0jcW4MmRuDs/ZOWLie12b9xP4ywzGPustsOmNVpUtSLAORYP4+ZQWTFm9g4c/buOKl6IOJ4GQ7iYy0Eap9gL99sYxxExcFWJ5rFji7OUWyIGeadTlKSpK0Eeoe/emfh4SoGUjdCIpTZkkmO7hpZOeK9yf0aBm1frdWqYmX8kuCZ1bdEEkn+MuxVRxLMoZ03WrOANaJyEci8ncR+T8ReQtYDHQAJmJl5wXAGLMduBzIBaaIyLMi8gAwD2um4C3gdf8vMMasAq4HGgGzReQpEXkUWAAcBDxsjEmNs3EKEYTBB4cPZbVt9/4A33lJ4C34X9NWRq8UAqeqRaLdW/zxLURzo/xXWbwW5lDjwmgRyxm6cd0aGiK7bPBaCv/feerSjfzx1bnc+s73/CfGxXo1gmY+yhI49bR8w07mrKmc+Rg30RqAjpuwiJ+3lrCtZD8X/NuyZK9yGGUnUmSfcASfkf96AbckMgLS1t37eGLSsorP4SINGWN4d+7PPBPiGv5y+aYQR8CG7XtcD07+800xxz/5ZZXtD326lH9NWxkQdtfp//qGt+aH3VcvwxZqn+hA4Yp1hjUeWjWsWWWbk+ywC+5KTYIpJTHUqZHHZ38ewkNn9GD8qd3T3Z0KPlywPiHtPH2e+/gs4TwpXri4LzXynCUi9CLpUv4nA+9g+eqfA1wHDAW+BC4EjjfGBDyBjTHv2nWmAacBfwT228eeZULcEY0xTwInAj8AFwBXAL8AFxlj/pqUM0sDweEmbxnVmZ6tG3BI87pMvf7IgLrvzQ+MS+sJw5hjtx93YTgrm09sKEwf+8rKHbkwuPn+Ku05OHTgQY0dtz916UY+/j7yjdR/4d49H1T6Gd83YZHj7/EneIHnnv3lVXybS2Pw6dyxZz9HPzI15D5/t6JUZE0OtmbHMoDwMXOV88Q40bh/orPZuK+Wb+ba1+cxdqIzGa/fVsIR/zeZkY9P5715VWNd795XGnKG5/Yog6IXvi6umKlxyp794f87uTk5/K5Pa1ftpZOmdSMr1NOXbWRLiKzI/7tqIKcdVsRzF/bhpUsOd/x90dwWmterwTn92nBoUYOI9cKRaTMvChzcvC6n9y6qcHe5bXTnKEfEx/d3Hxe1TvBsfiy0bVyLETG4tIYzVoUypGUSaVH+jTFTjTFnG2M6GWMaGGPyjTFNjTHHGGNeCqXI28d9ZYwZZYxpaIypaYzpbox51BgT1lRmjPnAGDPUGFPXGFPbGNPXGPNi8s4uNbwyYw3tbprApS/MYuWmnRXbBWhUu4B3xwzi42sH07Zx7YDj3pn7c4BC6eTmPCLEorlE4lQ1dmP4DxVeMtHfAYGKfTgl310Y/mC3n+gHO3Vn8XHlf+ew1PZD37m3lEmLAsMevjsvtkWv4Qi+mmsV5HJsl8D/VCyhF/8eZuHm9z9vY4lLP3uvUFZueH32Twlpa19peci2npq8vMq2hz9zF9Hn7vd/rFiEd81r8+h+1yeMnfAj5eWGX7fvod+4SQy4fxJfLgs9axCJ0/7xNZMXb+Ca1+a5PjaYcmMCQlSmmgsGVI2KE4mfo1zL5z8XOiNyj6IGPHxmD4Z3bs6Qjk1Zdf+okHHb/TmlVytuGRVZsfv25uGMOyU+C7B/KOUAdFyQEUSLeHNg09oR90eiePxo6tTI49kLYg/ledcJXXjmgj5hZ/kuGdSeY7o05z+X9Iup/fP7tw2IelSQl8OHfzwi4we2HvUwVCKxe18pt7yzELCUpldnVj7g/eO4h/pzLlgbmPPMyd+3Rn5y/yZOp7HduP2UBfitu+iLS8cbR5b/JIf6/GcM7lZv2eE8L3huRpUp1e9WV0biSYSDQfD5L1i7jZYNAt0IVm92n/hq0qKqIUQBTv37167b8go3/2+B62N27NkfMpHcmFfmhKz/4CeViv78n7by/FermLsmsrX9nblrufa1uRXRhzbvCrTq79hTyjPTV/HqrDXc8+GP7NhTyv4yw3nPzaC83GCMYXaxsxmN0nJTkY8hXgTo0To2q3W8PH5WT+46oSun9mpVZV+4qD4/b43Ntzn4Pu5EMRndPboV1K2CE6rNW0alZlGokhzyghaiBEe/GXty/O5BR3dp7miNQSjO6NOaY7o058UwM1532IODNiEiVDmhad0avHXlAMad0p3v7z6OpfeNTNlah2Siyn8GEinxRDTfuLLyQPU22r29rNwkLDpHOJxb/p13ZH+M0QHcW/793oc5Np4EvPEsFo7G7n2lAf7yoUhEAqLgXn21fFMVWU5b6t5CvPTXnSG3pyssnJvBabioO2/MdpdjYcKC9fS+73OGPTyFmat+CxgEhMqv4GP7nv0sWLuVk576irs/iB5C8s+vz+fdeesY8uBkXp6xmlnFoUO13vrO90wIugcd+9g0Pl+0gdOfTv0Sq34HOnOJS0Y875N6tiInR3jkdz0Dtg88qDGT/nJkyGN+3b6XBrXyXX9XuPv49ccdEnL7X4/tyHA7B8KhRbErMl/ddFTF+wdOP5TTexdVfB52iOUWUbcw9Pkkcr2Zklzm3H4MHZvX4bz+bfjzMYGLXPsERXOD8APL6TdUZgye8KcjAvbdfWJX1/3Ky5EK96SOzQPzfQw8qDFzbj/GdZuh6NWmIef0a0OdCAvYM43qcyZZxF/fDL/AzS3Rbr+/7drnmaRg83/aWuUCD4e/Aui0/yX7ylwNMMCh5T8On/94Zg0i4fSxm4hF1sH9KtlXVqXdcItKI1EjL4e9aQwBFw9HPzItqluGj8tenMX2klLGntKNg4P+/z7r/urNuznzn99wWJsGnHJYEXujhDg99K5PY+s4loLvhuUbdnL5S7Nj/r5YeevKAdSvaSmeQzo2DZt8a9X9o9hbWs4LXxfH/F3f3jycu97/gY9/sAwzwYslP/zjERz/5Jf0atOAly/rh4hwaFH9KjOxj5/Vky9icHkKZ6E/r1/bgJme3Bzh1lGdueSI9hXbzurbhgVrF7r6Ph+tGtRk1q1Hs2X3Pjo2r4sxhptHdmL1b7u5dvjBEY9dF+Msh5J6GtUu4NM/Dw25L1QugDtP7MKEhYFGgNoFubRuVCvsfa9R7QLuPakrb8/5mXlR1v0Ujx9NWbkJcMepVRC4+NZ3nSmhUct/hrEtxGIvt/grlNEiasSaVdcNTpVWNxfyNys2+32Bs2OWb9jp2s/FP8xm2PNw1WZgZae6txXFyR2RZL98Q2ireiwED6h27SsNOchy6hbiw+lAEKqG4oyGk3j4wTz86RK27o59oe/SMOsUPl+0gZnFv3HMo9P4+Ptf2Lhjb9j7wJw1W7n93e9jXpxdXZh/57H0aVcZTfrFi/uGrSsiFObnsmzsyLB1ggm2AB5Qv5Cnz+9N8fjRrLp/FGcF+bl3a1Wf4vGjeeeqQRX3sffGDOIQ+z9crzCPd8cMom5hfpV1WtGI5L5Tv1Y+D55+KN1a1eP5i/oy5/ZjAhR/gNGHxpfXo2ndGhXXoojw+6EHMe6U7jSrV1hRJ1TiwPfnJ3ZtkZI+fvBbtHvhgLY0q1tYpc7wzs2jtnP+gHa8O2YQxeNH88rlkX30g7MPiwjTbxjG6ENbMP2GYar4R0Et/xnGb1GUC7eLb7q1qs/s1eGzrS75ZUfSQ8s5HWAc5OLclsQQHaAgL8e15d9JJBk3xvNNOwPl6/TQcRMXMfaUbs6/KAq/bt9Dh2Z1EtJW8E/66/Y9HNS0atunP/2NY2s4WK4rTnns89DJi8IRi4vK36esYMaq33gsyM0jHO1umlDx/sCmtVm5Mfq6hysTkPSruhPqPyQidGlRjx8jhCaNlM3Un9tGd+aUXq0Y/MBkdu8rq+LT7lTpEBE+CREr/xAXg9rPrxsS8lry54w+rTkjQsQj3+xIMvld3zYJz0eieIfaNfKi3ruvPspdpty+7aqkgopK60a1eOoc9+E8sxG1/GcYeaFMKH6ECvN2Zp+igM/+yljLBoU8cPqhjOp+AB9cfQTBbC8pja2jLkh0hl+Aw9tX3jicDi5WbdoVVxbNcM/8uOLaOzz29dk/uVsfEGV/PC4Q0b5rVvGWhAwoV292vh7htVnuIuhsjXGG7bvVWxj8wGTXxzlR/JX4eGfMwCrbgv2OnXDZ4ANpXKcGU/56JG9eOYDLByc2y2fNAuexwzs0q5sQC+clg9pHrxQHmR4WUXHPj/cEhvB0M1MLzgfjSmzor5thRLvPFzWsuqJ9QFAceH8/aUE4s09r/n5ub7qHWPh1cPM6SXf8cdq+G4UxWvSSUNTIz0nKLEdZHBlSXS0WdlG3PMpC7hkrN4ffGYY9+8v4duXmKqnYQ/2msQyyyssND36ymD+/Pi/iYlYlcwi3IDUZ1MjLDZiV6dG6AV1bhl/sekyXyG4KzeoV0rddo2rhXnDHCV2YeevwpLUf/AxSqj+1CvJYMW4UL11yOKvuH5WwdutmWOI+r6K/YoYRSmE7vXcRJ/RoGda6sjcoCc5/vnWeqfXnrSWJifcYCYftl7rQGP82eTljhnWgZkGuY6V4yuINDDioiePvCCacDlBa7nxRavCiJVeLhV3ULS03EV2ctu9xP+Nz0fMz+Xal5bd/dOfmPHuhFbs51NcEJ8WKhjGGA2+ZWPH5nblVE0spmYXPTcB/Qaob3rlqIKe4DOt6cq9WnNijJT+s206nFlUtkaf2asX/7P/WBQPactHAdpz77IyY+hcPPVs3iLroMdE0q1vIKb1aVVxb064fFuUI56TCtUjxHrk5wpAEz/rsiOHZpFRFLf8ZRrAitXzsSB46o0fEadVQGSF9RDNarUjgws9wOFVaQ8Uyj8RHdiZbp4OGF79ZTTJGOm4GLcHJyVzlKHBj+TeRlX+3bCvZX6H4A3y+6FfufM+KCrNzb9WbdbhEVot/qeqT/ez0lbS/eWKI2koy6X+gM5/bKJ6IUSkeP5pboySb8g8RCPD+1YPo1aYhD5/RI2C7E0UjJ0foXlQ/pFvB7cd34cqhB3Hvyd04okMTV9mzE8mrl/evsm3+HccGfJ6boDCG/tx7cjfuPakrr1/RP+a46E5pl+T2lcznvTGDqmwb2S25SUezBbX8ZxjBCltwAo5QFOTFPsbr2rI+c9aEXxDshJJ9ZazYuJOuLeuFnCJ3qoO6UaLBsjrsdxnzPR6f/3D5F0rjcPtJ1lrrsnIT17n66HrHx+wKk035xW9Ws3Hn3oh5KYL5w3/nMPmvRwZs82LkmrqFeRllgfL9psMemuKofrO6NXjtigEBi5JDcVLPljx+Vi82bN/D4eMmxdy/y4ccyNiJoeW8YtwocnOEr286ikmLfuXoLs1pUd9KEnda7yJO613Env1l/Lp9j+tIOcE0rF3ATSPDJ6W6OcK+RBLK779+rXyKx49m195SahXkJsXdqE6NPM4f0C7h7QKMO6V7RXJKgKfP752U71GqD6ES9F1zdOQQsooz1PKfYfjra04tJ+eES68egjuO7xLw2a3yHExpWTmd7/iY45/8ksteDB3r26kOGmrhbL/24a2TuTnCQy5dChJpDffhNlb+7n2WUrlnf1nE6CTBbNrp3JWmzM66Gg9vzPoprOLvw43iD9aia3++WOxN3/6Fdx3HinGJ82NNNu2b1KZ9k9oUjx9Nx+bRozhN+osV0/vLG8O7fnx101E8flYvwPJ/L3SRCfz1K6pathfedWyImpUh/Vo2qMn5A9pVKP7+FObnxq34h2Pa9cMozM/h+ENbcMWQxC7ujYXaNfIycp3BOf0Cn0OdDqiXpp4omcSS+0YEfNb/TWJQy3+G4a+cOn0ARIoeEdzGhQPbcc+HlRk/124picv6/PKMyvBukxZvYND4L/jyxsAYvE6VULcLZ/NyhOnL3CWP8u/K6ENbMHf1Fta5jBEfzJQlG0Iupg5Hlzs+YdnYkXS6/WNX3zN5SegkRqGI1/K/dstubnh7QewNRKC83JBjK3yXvJD65FBOyc0RihrWZO2WxCcrCraSxkOwkWDCnwbzxeIN3PT2giouge0a1+Lja4dQmG/dM4oa1mLZ2JGU7C+jXmE+s4t/Y8aq3zijT1GVWN6L7x3JnDVbKGpYk7ycHHLEcgcb+uCUgHrhQgKGygQ7wGGG3mTSpnEtFt/rPAdAovj0z0M49tFpKf/eZOImlK+igLVQv3j8aIwxGTno9Sqq/GcYU/0UvGAraSIITpxxyzsL4/Kxu/P9HwI+/7y1hOGPTOULv/T28Vj+/bfUqZEX4F+em5PDBpcLS4v9ftNwt5lvbx5O//uduziE8nmPRv8YXChuf9d55tV4LP/GGC56flZMxzrhiv/M5p/n93E1k5FK3rpyQMX7t/8wkH5xuLuE4rIj2nNOvza8Mfsn14s+V4wbxVfLN9GwVgFLft3B9pL9XDyoXUCd/Nwcjut6AMd1ta7r/WXlrNq0i4Ob1Qn5cM3Pzanwj+/TrlFA8qxgDmvTMOBzg1oFrBg3ij+9Opd5P23lqXMjx+A+7bAi3p6zFoAmdQp45Hc9ItavznRsXpd7T+rK7e/9wEfXDE53dxQlrajin1hU+c8w3LqQRMPJ5ZRoT5jgmOZO29+yK0SCM79jR3Q7gLe+W1vxOTcHerVp4Cos5MOfVSaDyhEJOTA5oH7V7IUAd5/YtcpgB2BjDErs5lDnmkDKTOyW/20l+xOaATiYzxdt4OBbJyZkTUKiObdfmwDlt3m90P8Ff/52Ti+ufmUuYCn2z365KmL922zXu3fHDGLDjj0cPjb04OLp83oHJP169oI+AdE1nM425efmuI7B7YbcHImq9Pu4/fjOtGpQSFHDWpzZN3xiqmzh/AHtkuaDryhK9qLKf5bw+XVDOfqRqTEdG6sfvNvoPNEYN3ERZwWtX/CPFHRYm4ZByn8OpUFrFlbdP4q1W0ooaliTG95awJt+9YPJkfADE59Fzp9urUIrW27DWqaCnXtKo1r+v/95W8jtOfGGd3GAFxX/5y/qy7BOzapsz5Hw/W1cu4DjD23J8E7NKdlfRqPaBdw6ujNrt5TQupHljlNaVh524X6zuoWc0KMlH8xfV7Htwz8eQZcW9cjJERbfO4I5q7fQs00DahVk/u28Qa0Crjs2dbH/FUVRshFd8JsldGgWepGfv39/OPz1mgdPP5SzIljk9uyvXAD6wYJ1Yett3+M+g2qoWQ9//TVYfyorLw9IaAbW1GHrRrUQEcae0j3i90WaZjx/QLuAqDQPnHYoDWqFjmW9aP12Hv98GdtKYssamwwmLd4QVcH+57SVVbbt2lua1sFMLO4Pgw+OPXeDj5m3DA+p+ANMvX5YyIRQb145gO/scIw1C3JpVLsAqPwP+ogWsevJs3uxctwoisePpnj8aLq1ql8xACvMz2VghybVQvFXFEVRUoM+MbKI+XceS4+7P3V9nL+FuH7NfMafdii5ORKwmNfHtKUbOdb2Jb7mtXlh21y4dhuDOjRx5Xd+9VGVIb5Wb97Fec/N4KffKhdb5gQp6x/MX19F+fenIC+HleNGBSSP8kckcg4CX/QUf07q2ZKJC9ez329x8qad+3j086We82GPNqPjb232cemLswLi+cfLkvtG8MdX5vKpA9es8/q3oXOLesy5/RgOu/czR+2P7HYA/zivN8aYuHIFNK1bI+y+1o1q8cwFfdizv4w9+8t4b946Dmxam74RfOPdkorZFkVRFCU7UMt/FuE0y2J+bqCi4a8j+qzh4Yzi4VxFgrnujXlV2o6GLwQmwNAHpwQo/lBV+d9fVs6+CMo/RFaqckQY3b1lwLZLBrWP2N7jZ/Vi4V3HhdznJrNyKnh66grXxzhR/IPj9EeiRl4uD5/pbFFnkzqWAt6odkGVQdeo7lUXpbesX8ijv+sJWP/b4vGjmfCnIyr25+YIL1/WL+CYE3q0ZNE9I7jzhMqQt/m54mixWWF+Lg1qFXDhwHYMPjixWS0VRVEUJVGo8p9lzL7t6Kh19geF1PT/FM0A+cQXyx3149fte6u0HY0Xvi6OuD84UlF+bk6AG5JbBLju2I4ca7t0nNOvjaMEI74wiV7npW8SPxg50I4nHy4+/BNn96p4f/1xlm933cJ8HnEwAJCg5em32wtj6xbmcfyhgYO0B047lE+vG1pFFl1b1uf5i/syZthBfHnjMAZ1aMKysSNZdb/lVvPk2b2oWZDLxYPas/jeEbxyWT++vzv0YE5RFEVRMhF1+8kyfNZTH6H81DsdUJfFv+yo+ByYW8B+jRInyMli36te/o4rhhwUtZ6PHXtKaXfTBA5qGjqZT7AVPzdHIrr9RCNHhDo18vjXBX1cH9unbUNmr44vM7KPPw0/mOO6Nmf0E18mpL1kMODAxrx8Wb8KGRQ1rEXx+NFs2bWPeWu3cvHzszixR0tO7NGSIQc3Ye2WErq2rEzWcuphRVz3xvyI39GzTWC2x0sGtaNf+0YUNaxZJZxqpEgxww5pxrBDKv3388P43Pv86RVFURSlOqGW/yzkttGdK94/f1HfKvtvHBGYwt5/oa3TWLszi6O7h0xc+AsnP/WVo/b8WbExdH6DXAm2/At7S2O3/O+OY9YgUYr/x9cO5rpjOtK1ZX2+vXl4xfabR3aKcFTqefWK/iFdqBrWLmDYIc0oHj+6wurfoFYB3VrVr/JfGtE1fD6JXm0aMCRo4a6I0K1VfRrUKqCoYS0GHmQlhDrbRUZrRVEURck21PKfhVwwoB0NaxXQsHY+PVs3qLL/4OaBkYH8s+T61LUxwzpE9GE/61/fJqSvbgg24K7dUlLhXhQLH8xfx5N+birpwD+V+QH1C1kxbhSl5eWO11a4Zer1R1bJyJoqxp3anfZNa/PMtJWU+g04z+vCT9FKAAAgAElEQVTfhvtOjhyZCeA/l/Zj1aadHNQ0dGQrRVEURVHU8p+VFOTlcFrvIo7q1DykJb+oYa0QR1n4FtWGS3QFsCNEGM/pN4T2AU8kwQt+/Qctkfj3Re7deqJxTr/kWJ9zc4QaebnUqRHorhUq1GQstG1cm7GndEtIW25pVLuAG0d04sd7RnDH8V24elgHZtwy3JHiD9Zv06FZXc0EqSiKoigRUOU/wxjWqTKKSKcDkpeVMxxO9Krud1UNJ9q6US0eOO1QV9913TEdXdXPy41N6evQNPG/4x+GOl/LEI7H7Eg1oTjkgLoc1akZItbC2X+d35v3xgzi4TN68PuhB7Jy3KgqkWyiMf5US8k+t1/buPodLwV5OVxyRHv+etwhjjLoKoqiKIriHHX7yTA6NKvLI2f2YFbxloQomG7xX+h7Vt/WvDbrJ8fHntGniBveXhCxztL7RvLG7J84vXcRuTnCI58tddz+vtLY0sK2aRx+piNW/JM4uWXZ2JHsLS2nTo3Il+dzF/Zhe0kp9e1F2z1aN6CHnxvXoA5NXOV28M+e/KfhB/PEpGVRjzmzTxFjhnVw1L6iKIqiKOlHLf8ZyKmHFXH/qd2TorRGY19Z5SLYE3u0jFCzKiLCjFuGR6xTkJfDef3bUpifS35uDif1dP4dH32/3lV/vECojLX5uTlRFX+wfs/6YbIK+6hfM5/PrxsatS3fYlkf1x3TkeVjR/LemEF0aVEv5DGHtWnAA6f3oG3j0NGXFEVRFEXxHqr8K674fNGGivcDghTGcNw6qjK6ULMImVJDcc3w6HH1fThRmMPxzc1HxXxsrG22blSTzkGK9WtX9E94Pzo0q8OpvVpFrPOfS6u6COXl5tCjdQMmXjO4SlKtxfeO4H9XDUpoPxVFURRFST7q9qO4oqlfngAR4b6Tu3Hbu99HPOaywZVZcUWEb28ezrSlG/l6xSbenbeuYt+5IRbJHugicktwDgM3tKhfs8q247rGt4i2Rf2aLB87kmnLNnLJC7Or7PdlKJ781yO56PmZnNG7iP4HOhtQueWW0Z2ZtmwTm3ZWRj/q0qIe744ZREGeMxtA8fjRlJaVkxcmLr6iKIqiKN5HlX8lJK9c3o9znplRZfthbRsGfD6vf1vO69+WdjdNCNnOxYPaVYm+ckD9Qs7s25oz+hQFKP93nNAlrj53b1U/4v4nooTtfPmyfpz7bOU5//P8+KMA5eXmcFSn5iwfO5IOt34UsK9f+0YAtG9Sm6nXJzcaUpM6Nfj6pqPYW1qGAdb+VkLnFu4j46jiryiKoiiZjT7JlZAMPCh0ZtP+BzYKuX3hXceG3H5Up2Yht0PlGoBbRnXio2sGUyMvN2S95WNHRumtRacWkaP2HN+9RcT9gzo04Z2rBvLKZf1Ydf8oR9/plLzcHK4MWqD9SIRoPsmgIC+HuoX51CvMp0vLehoSU1EURVGyEFX+lbCEUoDDKeh1C0MvPI3mxtK8XiFXDDmoiu+7P3m5Oay6fxQvXnJ4lX2+6DatGtSkZf2aXHt06DUCs249OmQG2mB6tWnIwA5NkqIY3zjikIDPjWsXJPw7FEVRFEVRIqHKvxIWEWHRPSMqPkdbrBsqrnx+gtxERIShHZtyz0ldA7b/+8I+jD+1O29cOYCcHOHao0PnBmjqcqFxMhARju5srSMY1KExhfmhB1KKoiiKoijJQn3+lYjULMhl8b0jWLR+Oz2KGkSsO6hDEzo0q8PyDTuT1p8LBrSj0wH1+Hnrbk7u2QoRCYhPD7Bi3ChOeupLvv95e9L6EStPn3cYC37eFnV9gqIoiqIoSjJQ5V+JSmF+Lr3aNIxeEfj8uqH87YtlvD9/HXed0DX6ATFwePtGQOi1BwC5OcKHfxzMuq0lfLtyM6Oi+PqnkrzcHA5z+FsqiqIoiqIkGlX+lYRz9VEHc/VRzuPzJ4uWDWpy6mFF6e6GoiiKoiiKZ1Cff0VRFEVRFEXJElT5VxRFURRFUZQsQZV/RVEURVEURckSVPlXFEVRFEVRlCxBlX9FURRFURRFyRJU+VcURVEURVGULEGVf0VRFEVRFEXJElT5VxRFURRFUZQsQZV/RVEURVEURckSVPlXFEVRFEVRlCxBlX9FURRFURRFyRJU+VcURVEURVGULEGVf0VRFEVRFEXJElT5VxRFURRFUZQsQYwx6e5DxiIim2vWrNmoc+fO6e6KoiiKoiiKUk1ZtGgRJSUlvxljGsfblir/cSAiq4B6QHGau6JYdLJfF6e1F0o4VD7eRWXjbVQ+3kVl432qi4zaAduNMe3jbUiVf6XaICLfARhjeqe7L0pVVD7eRWXjbVQ+3kVl431URlVRn39FURRFURRFyRJU+VcURVEURVGULEGVf0VRFEVRFEXJElT5VxRFURRFUZQsQZV/RVEURVEURckSNNqPoiiKoiiKomQJavlXFEVRFEVRlCxBlX9FURRFURRFyRJU+VcURVEURVGULEGVf0VRFEVRFEXJElT5VxRFURRFUZQsQZV/RVEURVEURckSVPlXFEVRFEVRlCxBlX9FURRFURRFyRJU+VcURVEURVGULEGVf0VRlGqKiEi6+6AoiqJ4C1X+Fc8iIgemuw9KeESku4icIiK17c+qaHoEESkAMMYY+7PKRlEURQFA7GeDongGEWkBPAN0Aa42xkwUkRxjTHmau6YAItIWeBAYAhjgAWPMo+ntlQIgIkXA74HmQDkw1xjzz/T2SgEQkVbA6cA2YCMw2RizW0TE6IM47YhIM2AAsBnYbYyZk+YuKUGISHNgOLAFS0ZT09yljCUv3R1QlBBcBowC9gGnichUY8wufUimD99vLyIXAw8D24E3gSnA/9LZN6XCsn838Ges66YA8M3IlBpjnktj97IaWzb3An/BGpDVtHfNE5GrjTFf++rp/S31iEgOcD9wMdAQyAV2ishTwJPGmHUqm/TiJ6PLgbpYMjIi8gZwmzFmhRoI3aGWf8VziMirQAdAgI7AlcaYV9LbK8W2+H8BrMdSZqYZY0rsfXrjTRMiUgd4EjgJeBdrMDbZ/vwUsM4Y0zV9PcxebMX/EeAq4GVgArAHOAW4BFgFjDHGfJy2TmYxInIE8BhwMPAJ8CPWrNkpQFOsWc2b09dDRUT6Y8noEOAjYC7WAOAkoDvwX2PMBenrYWaiyr/iGUQk1xhTJiLvALWAf2FZlz8FLjPGrFUlM32IyN+wlJg+vilxEalhjNkrIoXGmD32NpVRChGR47Aeii8B1xtjNvrtm4Kl2PQCNqr1MrWISGdgOpbCcoYxZqvfvsexLJlzgRuMMV+phTl1iEhP4GksJf9+4D3ftSMixwP/AVZgyW1V2jqaxYhIJ+CfwIHAWOBtPxl1wzJGCXCMMWZe2jqageiCX8Uz2Ip/LtAaWAp8BnwIHA2cZddRpTINiEhd4ChgljFmjojk2Vaz60XkM+BrEXlKRNqkt6fZhT0dfpL98d4gxT8fy8VksjFmgyqVaeFQoBEwwRizVURyfIuxsayZr2L5mV8sInVVRinlJOBw4DpjzLPGmI329QQwD0vxb4rl4qikh6OBwVgyetqWkdh6wgqsgXUusDudncxEVPlXPIN9QYPlr4wxZjvwKLALOFdE+qSrbwplQH0sNwWAY4FngXuANkAr4A/AO8DZ6ehgNmIPhpvbH4/0bReRHliuQH2BPSJyn4hcICI1Ut/LrMY3GK5Q6o0x++zXVcALWK4mx2NdU0rqmAJcZIx5DyrWXJQDGGPWYlmUGwN6zaSPD4GrjDFvQsWssjHGlNkup3WBBliyUlygyr+SMkSko4i0FJF6vtCDfpYWjDFlWP/J1sASe/N3wPNAD+Bk+5jR9pSfhjBMIFHk0wTLwjLIViyfAHYCXYHeWLMCL2DJ6Xp7ulblkyDCyMZnQf6H/fqoiDwqIs9iuQBdgXX9tAduwZLPw3bUGZVNAgn+Lf0++1wRjrNd48pty6Vv/xzgNSwL83Ei0iA1Pc4uwvzXZwIVa8n8Z11E5ACsGZulxph1ye9hdhPq/mazBivyHxA48y8iNbFkVGwXxQWq/CtJR0R6iMgnwDRgMTAVuAlCuvG0wopW4vtv7sZSNJcBl4vID8AHwPn28TpNHidO5GOMWYOlqDQD/g9rTcYFxphFQIkx5gesWYC3sFwdzrSPU/nEQRTZ+CzInwPXASuBC4GLsBfEGWP6AsdhuTjMsfedZh+nsokDsfJcfCsiR9iRsHwzl/6/7UIsy35XLPcFbMulsd/vwlqcvQwYhD3rqcRPJPkAGGNKjDGlYQ5vArQFdCF2Eol0fwPr+WMbBUPRAMvYNMkYszfpna1mqPKvJAWp5BLgKyyl/hPgdSxL5FgR+ZeIdLHr+8LOlmNNta4HsG/O27Hi+jbBWvjzN0BDF8aBW/nYvAjkY7knrAHWQcWMDcBq4G1gP9DGT6aKC2KRjTHmMWAg0AeYD1xjjPlArEX0pVhKzDNYLgw9bauZEgMiUiAi12PNqhyONRgmjJKyG0t2rYHjfZb9IOvmd8DPQGesiCY6KxMHLuUTfKzvdx9ov06zt6uulCBi0A3C/fb9sWajp0Spp4RAfywlKdiWrUZY0WF+sV8vNsZcjpXo5nOseP63ikienwWmNZb/3mIA+ya+Bsu1ZBOW7+x8Y8zSFJ5OtcOtfOzDZmCFKgQrR8gePxeUXLvNjVgDhOYRrGpKBGKRjVi+sLuxose0NcZ8YLdVZl9f+7EWyOUCB/tCtCruEJGmWPkUxgFrsdwTB4jIefb+YOvydqyB1zLgVGy/fp/lX0QK7ChZ39qHNPTfr7jDrXyC8fvdh2AZMebZ28vt41slp+fZQwy6QXmYwfAQ+3W23a5PRm2TfArVAlX+lWRyOnAY8IwxZpqfC8nnwM3A91iLQ6/yOyYH66Y7SkSWYFltZmL5L99o7/+diHQEtZDFiVP5jLHrr8eyHm+3jzvRnk7P8bOqNbNffaFA9R4TG26vHZ9bwxCgUES6Q4Vy6RuENbVfv7f3qWzccwhWMqjvsVwOrrC3/5+tqJT5DYh996avsXzLmwNXiRVi0iebfXad1vbrmhScQ3XGsXzCISKNsBbPTzPG/GJva24PIF4WEQ1oED9u72/Ba2rysAbSc4wxS+xtzUXkXGCCiPwhNaeRuejNX0k4fkqF73Vj0HaMMd8Bd9kf/+JnUWmD5fd6r/35FuASY8zzWAvjfKE/j7LbUQuZS2KQz3UiUmT7VX4GjLe3Pygix9qWmdoicipWvOzlwBt2Oxqa1QWxXju+CBhYMeNrAb+36+4TkToichrwAJZr1vP2PpWNe37CytQ70hizwxgzHSsXSQvgTrtODlTem2y//lexrokhwBMicoAtm5oiciYwEnjHaKzyeHEsn2D8BgU9gZZYin6eiIzEymr+PFbyyV+T2P9qTRz3t/IgY0Vnu7xmu3mNwJLRc1gGqJ+SdxbVA1X+lYTjp1Tk269F9muwxeU9LB/x1lhhIsG6Ub+CldjjQmPMeGPMSnvfPqwL/CpjzNPJ6Hs2EKN8fMpkiTFmPNaDsCnwkYjMxlqo9QzWIqzb7AXAikvikY3Nx1hrMa4SkVdE5P+wHoj/AgqxkknNTEbfswFjzGrgTWPML37ucPcCJVhuCm1t63JO0HFLgT8D3wBHAF+JyNtYBo2nsCJn/T1V51FdiVU+9rE+Q9KR9mtd4D6sZF+nA3cYY4qMMV8k9SSqMXE+e/yNFcPs11pYA4X/YsnobmNMM2PMh4nteTXEGKNFS0ILlZmj+2It4F0D1LO35QTVHYaV7v5roL29rQVQ4FcnJ9l9zqYSh3xa+21vCIwGJmH5K8/CisrUIN3nl8klDtm0tbfVwEqIt9E+vhzYjDUAUNkkT17327/16/7b/erl2K/tgRuwBmhrsPJmPKOySa98/OrXwFp8WooVpakcS7FsmO5zqQ4lQc8eAV62ZbRSZRRbUcu/knCMfYUaY2ZhKYdFwKW+3UHVFwNfYrn71LaPW2+sKXHf9Lm6JySQOORTz2/7VmPMBKwwkkcCxxlj/mSM2ZrErld74pBNHfu4vcaY17DcS4ZiDdD6GGMuVdkkBZ/F8kEsReQMETnSGGNEJN/nSmIqfZpXGWMeADphRaIZZIy5XGWTNBzJx4+GQEcsr4iNwOHGmPOMMVtS1+XqS4KePflYoXNzsAYPfVVG7lHlX3GM7Ttc234fMWqCHz73nMtE5CD7put/7AYsH8qWWBEAKlCl3x0pkE9j30a/m3gpsNcY81vcJ1CNSZVs/AbMi4wx040xHxkrk6wShhhlA1j3KDvS1W9Y1mWwspJjjNnvp2Tm2O37BgPbjTG/GE0gFZUUycfX7i7gIeA0Y8xQY8zsBJ1GtUZEisTKIO4mSV1Mzx6sgCB3YcnoSGOtEVBcosq/EhWxuAHLD+8fED5mcghLyhdYiZ86Y0Xrwdg+l35RYjbYdXcmo//VnXTLxzcQUKqSatnogNk5ccrGH59V/zlgOtBDRC6wjxuJZXXuY9fRa8UhKZZPb7vODmPMU8aYdxJ2ItUYW0ZjsSzwD2ENnsLWDdoU07PHWLyrMooPVf6ViNhRQn4CbrU3ldoRKkKms/c93ETkABFpYk/FjcdK0nWZiFwkIvnGytxXLiI9gJOBBVj+r4oLVD7eRWXjXeKQTXOxYslXYFssfZl5b7ZfHxGRB7Gsm38CeiXnTKon6ZBPlAGEEoSIXIzlGnUtlv99E6zwncH19P7mRYwHFh5o8WYBzsBKwjEFOBdo6eCYBsApwERgLFDf3v47LAvMbqzoCcdgxWCeiBWJ4ZJ0n2+mFZWPd4vKxrslAbK5D3uRYoh6tbGylvoWW38HDE73OWdSUfl4uwADsPK4lAMfYUXZeQlrce4ohzLS+1u65ZjuDmjxZgFqYmXOWwb0c1A/DxiMFbZuK1ZYzt8F1TkbK116OVBml/XAeek+30wrKh/vFpWNd0syZGPXywcuwHJjKMfyVT4/3eebaUXl492CtSbvQ/v3m4eVgKutve8he/uF9uccv+P0/ubB4gu7pCgBiMjhWCEcLzTG/MfedhBWlsouQDEw3xjjS9LRC3gHa2X+E8BfjZ1Z1Pbf86Xerg8Mx7IC7AVeM2H8OJXwqHy8i8rGuyRSNkHttgUWYkVdegS4UWXjHpWPdxGRE4H/YS2cftv4JaQTkUuxQtY+a4y5Iui4Q4H30fubp8iLXkXJUgbZr9sBxMreejXQHytZEMACEXnMGPOCMWauiLwJPG2MWWEfk2eMKfW7uMUYsw3rBqLEh8rHu6hsvEvCZOPfqDFmtYj8BZhsjFmekjOpnqh8PIox5n0R6QssMcbshgDlfQWW20550HaMMQtE5HXgX3p/8w5q+VcCsC9CIyJXYmWcHAJsw0q08QtWmLS9WPHDj8WawrvQGPOBXxu5WOt7NPJIglH5eBeVjXdR2XgblU9m4ZOX3+f+WLJaZIzp6rc91996rzLyDmr5z0JEpA7W9NpkY8x2/31+F/Qe+/WPWDfaH4Fj7dE5IvIucA1wG3C9iEw0VpiugItdcY/Kx7uobLyLysbbqHy8TyQZ+eOv+NvMAJYCNUXkEGPMEruev+IvKiMPYTyw8EBL6grWoqcyrOm5o0Ls980G1Qd2YE2/lgN32dsLfPWAZsBcrNi+R6f73KpDUfl4t6hsvFtUNt4uKh/vl2gyinJsE2AqVtjOtv4y1eLNonH+swQRaSYidwLPUmld+b2EjomcYyxLy+NYC6RKsGIuY4zZ56uHdZNeCBRQ6eunsZJjQOXjXVQ23kVl421UPt7HqYwiYYzZBPyGNXjrZ29Tn3IPo8p/FmDfGM8C7gS+xxrhf4wVn/cYCUqZbir98Z4DlmOFX+sulSnqc+16JVgj/ly/Y/WCd4nKx7uobLyLysbbqHy8j1sZhWnDV2ea/Vo/CV1VEk26px60pKYAJ2HFOG5ofz4XK+buN0D7CMediWVd2YO10KqGvT0fOBEr7fZ76T6/TC8qH+8WlY13i8rG20Xl4/0Sq4xCtHONLbOx9uecRPdVSwLlnu4OaEmSYIMuPPum2cDvc13gBftivdF3cw3T1mN2vQ1YURdOxcqiuAzYBJxs11MfP5VPxheVjXeLysbbReXj/ZJIGfn//ljhWMuxMvNGPEZL+ouG+qxGiEhXoD1WaLTVpjIRSnBYrhxjTLmIDMfy88sBTjHGzAlqL9dYkRTqAadhRVhob+8uBWYBY4xfsg8lPCof76Ky8S4qG2+j8vE+iZZRmO84GCvz7zzgOGPMziScipIo0j360BJ/wcp++AZW9IMSrNH3TCxfvly7TsgpOKxsfeVYqbfrhdgvfu8PBI7GmpIdku7zzpSi8vFuUdl4t6hsvF1UPt4vyZRRiPoHA98BZ6b7vLVEL2r5z3DsEf1rQCOsi3wpMBQrGUpN4A5jzLgQx/lG+N2xFlh1wbKyTDJB2RGDrQOKc1Q+3kVl411UNt5G5eN9UiEjv2NUVplGukcfWuIrwL1Yo/M/ADXtbTWAEfb2cqwpuEht/BEre+KH2CN8rAv+OKBuus8xk4vKx7tFZePdorLxdlH5eL+ojLRElG26O6AlDuFBPazwXD/6bRMqp/NupnKar12I43Ps1yLgPbvuNfYF/wOwAjgy3eeZqUXl492isvFuUdl4u6h8vF9URlqi/kfS3QEtMQit8sJsiBXybClwQIj9NYFPqFy1L6Hasd+fA2y22yvHCvV1ZbrPNROLyse7RWXj3aKy8XZR+Xi/qIy0OC2a5CsDEJGBItJPRHpDQDKUvcBsrKm8Il99Y/nr5RgrGcqTwH6sqb/6dnvi346I9AGGYd0wagGPAE2NMU+n4PQyHpWPd1HZeBeVjbdR+XgflZESM+kefWgJX4BTsMJm+Vbql2GtvO9p76+NtSCnHPh9hHYm2HWusD/7j+ovwUqhXo7l1+c4qUe2F5WPd4vKxrtFZePtovLxflEZaYm3qOXfg4hIMxF5Bngd2A28DDyBNfX2B+B6EWlujNkFTLYPu0pEGga140u7/Tf7daiI5Blr9C/2tk1Y03mjjDHHG2NWJe/MqgcqH++isvEuKhtvo/LxPiojJWGke/ShJbAAjYGngS3Aw0Bnv33DgRnAeuzFNliLeKZijc5vCNFeLtAN6yJ+xd6mabdVPtWuqGy8W1Q23i4qH+8XlZGWRBa1/HuPvsDlWCP6G4wxi/z2fQMswUrcUQBgrCt2HPbCHREZ5hvV2yP5MqybQC0s/z9MpV+g4h6Vj3dR2XgXlY23Ufl4H5WRkjBU+fceS4HrgZuMleI8ByoSb+zGmooDy6cPAGPMJ8DjWIty7gdOsLeXikgLrBBdJcDzKTuL6ovKx7uobLyLysbbqHy8j8pISRh56e6AEogxZqWIPGuM2Wl/Lvd/BdrYr3PB8t2zR/APYU3j/Ql4WUQeBfYAnYDfAW9iTQsqcaDy8S4qG++isvE2Kh/vozJSEolYM0NKJiAiNYHpQKExpps94i/3218AXAWMAQ4C9mHF5H3SGDM2HX3OJlQ+3kVl411UNt5G5eN9VEaKW1T5zwBERIwxRkR6ALOAZ40xV9l+e6Uh6jcGWmFN9c0zxmxLcZezCpWPd1HZeBeVjbdR+XgflZESK+r2kwGYyhFaHyyZTbK3lwKISD2gzBizy57q24wV+ktJASof76Ky8S4qG2+j8vE+KiMlVlT5zyyOBEqx0nL7pvIGAGdgxfy9wfbxU9LDkah8vMqRqGy8ypGobLzMkah8vM6RqIwUF2i0nwxBRA4AjgA+NsbsFJFewI3Af7F8+bba9SR8K0qyUPl4F5WNd1HZeBuVj/dRGSmxoJZ/j+Pz6QO6A22BT0XkYqyLujdWeu5Bxpg1EDANqKQAlY93Udl4F5WNt1H5eB+VkRIPqvx7HL8LdqD92ge4CFgJHGOMmZSOfikWKh/vorLxLiobb6Py8T4qIyUeVPnPAEQkD2hnf2wH/NUY82TaOqQEoPLxLiob76Ky8TYqH++jMlJiRZX/DMBY2fgmAsuBh4wxe9PdJ6USlY93Udl4F5WNt1H5eB+VkRIrGuc/Q/Dz71M8iMrHu6hsvIvKxtuofLyPykiJBVX+FUVRFEVRFCVL0FCfiqIoiqIoipIlqPKvKIqiKIqiKFmCKv+KoiiKoiiKkiWo8q8oiqIoiqIoWYIq/4qiKIqiKIqSJajyryiKoiiKoihZgir/iqIoiqIoipIlqPKvKIqiKIqiKFmCKv+KoiiKoiiKkiWo8q8oiqIkBBGZIiKaNl5RFMXDqPKvKIqiBCAixmW5KN19VhRFUZyRl+4OKIqiKJ7j7hDbrgXqA48DW4P2zbNfLwBqJbFfiqIoSpyIMTpDqyiKokRGRIqBtkB7Y0xxenujKIqixIq6/SiKoigJIZTPv4gcabsG3SUifUTkYxHZJiJbRORtEWlt1ztQRF4TkY0iUiIik0WkR5jvqSUiN4vIPBHZJSI7ReQbETk7FeepKIqSyajyryiKoqSCvsB0+/0zwEzgVGCSiHSyPxcBLwETgKHAZyJSx78REWkAfAmMA8qAfwMvAk2BV0TkvuSfiqIoSuaiPv+KoihKKhgFnGeMedm3QUSeAy4BvgYeNsaM9dt3O3APcCnWOgMfjwG9gBuNMQ/41S8E3gVuEZG3jDHzUBRFUaqgln9FURQlFXzpr/jbvGi/bgPGB+17yX7t6dsgIo2B84DZ/oo/gDFmD3AjIMA5ieq0oihKdUMt/4qiKEoqmB1i2zr7dZ4xpixo38/2a5Hftr5ALmBE5K4Q7eXbr51j7aSiKEp1R5V/RVEUJRVsC7GtNNw+Y0ypiEClQg/Q2H7ta5dw1ImwT1EUJatRtx9FURQlU/ANEh41xkiEMiytvVQURfEwqvwriqIomcJMoBwYnO6OKIqiZCqq/CuKoigZgTFmA/Ay0EdEbheRKq6rInKQiLRPfe8URVEyA/X5VxRFUe0y5cwAAAEdSURBVDKJq4GDscKAni8iXwK/Ai2xFvr2Bc4GVqWth4qiKB5GlX9FURQlYzDGbBeRocAVWCE9TwMKsQYAy4A/A5+lr4eKoijeRowx0WspiqIoiqIoipLxqM+/oiiKoiiKomQJqvwriqIoiqIoSpagyr+iKIqiKIqiZAmq/CuKoiiKoihKlqDKv6IoiqIoiqJkCar8K4qiKIqiKEqWoMq/oiiKoiiKomQJqvwriqIoiqIoSpagyr+iKIqiKIqiZAmq/CuKoiiKoihKlqDKv6IoiqIoiqJkCar8K4qiKIqiKEqWoMq/oiiKoiiKomQJqvwriqIoiqIoSpagyr+iKIqiKIqiZAmq/CuKoiiKoihKlqDKv6IoiqIoiqJkCf8PFDYyyATz+gsAAAAASUVORK5CYII=" }, "execution_count": 10, "metadata": { "image/png": { "height": 261, "width": 383 } }, "output_type": "execute_result" } ], "source": [ "%matplotlib inline\n", "In.plot()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "df1 = In" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "df1['Outsidepmm'] = 400" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ppm/minOutsidepmm
count100985.000000100991.0
mean547.646878400.0
std304.5113070.0
min201.000000400.0
25%362.000000400.0
50%438.000000400.0
75%615.000000400.0
max2777.000000400.0
\n", "
" ] }, "execution_count": 13, "metadata": { }, "output_type": "execute_result" } ], "source": [ "df1.describe()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "df1['Infiltration'] = (df1['ppm/min']*41000)/df1['Outsidepmm']" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ppm/minOutsidepmmInfiltration
Time
2016-02-19 13:26:00NaN400NaN
2016-02-19 13:27:00718.040073595.0
2016-02-19 13:27:00NaN400NaN
2016-02-19 13:31:00337.040034542.5
2016-02-19 13:36:00332.040034030.0
\n", "
" ] }, "execution_count": 15, "metadata": { }, "output_type": "execute_result" } ], "source": [ "df1.head()" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "PPM = pd.read_csv('Netatmo2016_2017CO2ppm.csv', parse_dates=True, index_col=1)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": { }, "output_type": "execute_result" }, { "data": { "image/png": "0123f776bf4487039c9b987616e6bce8a208449b" }, "execution_count": 10, "metadata": { "image/png": { "height": 261, "width": 383 } }, "output_type": "execute_result" } ], "source": [ "%matplotlib inline\n", "PPM['ppm'].plot()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0ppm
Time
2016-02-19 13:26:000NaN
2016-02-19 13:27:001718.0
2016-02-19 13:27:002NaN
2016-02-19 13:31:003337.0
2016-02-19 13:36:004332.0
\n", "
" ] }, "execution_count": 11, "metadata": { }, "output_type": "execute_result" } ], "source": [ "df3 = PPM\n", "df3.head(5)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "delta_CO2 = df3['ppm'].diff(1)\n", "df3['Time'] = df3.index\n", "delta_time = df3['Time'].diff(1) / np.timedelta64(1,'m')" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "df3['Slope'] = delta_CO2 / delta_time" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0ppmTimeSlope
Time
2016-02-19 13:26:000NaN2016-02-19 13:26:00NaN
2016-02-19 13:27:001718.02016-02-19 13:27:00NaN
2016-02-19 13:27:002NaN2016-02-19 13:27:00NaN
2016-02-19 13:31:003337.02016-02-19 13:31:00NaN
2016-02-19 13:36:004332.02016-02-19 13:36:00-1.0
\n", "
" ] }, "execution_count": 14, "metadata": { }, "output_type": "execute_result" } ], "source": [ "df3.head(5)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "slope = delta_CO2 / delta_time" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Using matplotlib backend: Qt5Agg\n" ] }, { "ename": "RuntimeError", "evalue": "Invalid DISPLAY variable", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_line_magic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'matplotlib'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m''\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mdf3\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Slope'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/ext/anaconda3/lib/python3.5/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, kind, ax, figsize, use_index, title, grid, legend, style, logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table, yerr, xerr, label, secondary_y, **kwds)\u001b[0m\n\u001b[1;32m 2451\u001b[0m \u001b[0mcolormap\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcolormap\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtable\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0myerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0myerr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2452\u001b[0m \u001b[0mxerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mxerr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msecondary_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msecondary_y\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2453\u001b[0;31m **kwds)\n\u001b[0m\u001b[1;32m 2454\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplot_series\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__doc__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2455\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/ext/anaconda3/lib/python3.5/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36mplot_series\u001b[0;34m(data, kind, ax, figsize, use_index, title, grid, legend, style, logx, logy, loglog, xticks, yticks, xlim, ylim, rot, fontsize, colormap, table, yerr, xerr, label, secondary_y, **kwds)\u001b[0m\n\u001b[1;32m 1892\u001b[0m \u001b[0myerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0myerr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxerr\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mxerr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1893\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msecondary_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msecondary_y\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1894\u001b[0;31m **kwds)\n\u001b[0m\u001b[1;32m 1895\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1896\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/ext/anaconda3/lib/python3.5/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m_plot\u001b[0;34m(data, x, y, subplots, ax, kind, **kwds)\u001b[0m\n\u001b[1;32m 1692\u001b[0m \u001b[0mplot_obj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mklass\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msubplots\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msubplots\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkind\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mkind\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1693\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1694\u001b[0;31m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1695\u001b[0m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1696\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mplot_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/ext/anaconda3/lib/python3.5/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36mgenerate\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 242\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_args_adjust\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 243\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_compute_plot_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 244\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_setup_subplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 245\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_plot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 246\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_add_table\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/ext/anaconda3/lib/python3.5/site-packages/pandas/plotting/_core.py\u001b[0m in \u001b[0;36m_setup_subplots\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 293\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 294\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0max\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 295\u001b[0;31m \u001b[0mfig\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigsize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 296\u001b[0m \u001b[0maxes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_subplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m111\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 297\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/ext/anaconda3/lib/python3.5/site-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mfigure\u001b[0;34m(num, figsize, dpi, facecolor, edgecolor, frameon, FigureClass, **kwargs)\u001b[0m\n\u001b[1;32m 533\u001b[0m \u001b[0mframeon\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mframeon\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 534\u001b[0m \u001b[0mFigureClass\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mFigureClass\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 535\u001b[0;31m **kwargs)\n\u001b[0m\u001b[1;32m 536\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 537\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfigLabel\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/ext/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_qt5agg.py\u001b[0m in \u001b[0;36mnew_figure_manager\u001b[0;34m(num, *args, **kwargs)\u001b[0m\n\u001b[1;32m 42\u001b[0m \u001b[0mFigureClass\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'FigureClass'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mFigure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[0mthisFig\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mFigureClass\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 44\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mnew_figure_manager_given_figure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnum\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mthisFig\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 45\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 46\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/ext/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_qt5agg.py\u001b[0m in \u001b[0;36mnew_figure_manager_given_figure\u001b[0;34m(num, figure)\u001b[0m\n\u001b[1;32m 49\u001b[0m \u001b[0mCreate\u001b[0m \u001b[0ma\u001b[0m \u001b[0mnew\u001b[0m \u001b[0mfigure\u001b[0m \u001b[0mmanager\u001b[0m \u001b[0minstance\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mgiven\u001b[0m \u001b[0mfigure\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 50\u001b[0m \"\"\"\n\u001b[0;32m---> 51\u001b[0;31m \u001b[0mcanvas\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mFigureCanvasQTAgg\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 52\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mFigureManagerQT\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcanvas\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnum\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/ext/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_qt5agg.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, figure)\u001b[0m\n\u001b[1;32m 240\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mDEBUG\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 241\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'FigureCanvasQtAgg: '\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfigure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 242\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFigureCanvasQTAgg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 243\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_drawRect\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 244\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mblitbox\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/ext/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_qt5agg.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, figure)\u001b[0m\n\u001b[1;32m 64\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfigure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 66\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFigureCanvasQTAggBase\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 67\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_agg_draw_pending\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 68\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/ext/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_qt5.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, figure)\u001b[0m\n\u001b[1;32m 234\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mDEBUG\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 235\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'FigureCanvasQt qt5: '\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfigure\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 236\u001b[0;31m \u001b[0m_create_qApp\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 237\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 238\u001b[0m \u001b[0;31m# NB: Using super for this call to avoid a TypeError:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/ext/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_qt5.py\u001b[0m in \u001b[0;36m_create_qApp\u001b[0;34m()\u001b[0m\n\u001b[1;32m 142\u001b[0m \u001b[0mdisplay\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0menviron\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'DISPLAY'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 143\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdisplay\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mre\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msearch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mr':\\d'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdisplay\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 144\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mRuntimeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Invalid DISPLAY variable'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 145\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 146\u001b[0m \u001b[0mqApp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mQtWidgets\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mQApplication\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\" \"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mRuntimeError\u001b[0m: Invalid DISPLAY variable" ] } ], "source": [ "%matplotlib\n", "df3['Slope'].plot()" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "df = PPM" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "df['CO2volume'] = df['ppm']*((1/1E6)*41000)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "Above, I created a new column called CO2volume, in which i converted the ppm into cubic feet" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "df.describe()" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "del df['Volume']" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "df['Volume_other_gases'] = 41000 - df['CO2volume']" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "df.describe()" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "delta_CO2 = df['CO2volume'].diff(1)\n", "delta_Gases = df['Volume_other_gases'].diff(1)" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "df['Time'] = df.index\n", "delta_time = df['Time'].diff(1) / np.timedelta64(1,'m')\n", "slopes = (delta_CO2+delta_Gases) / delta_time" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "%matplotlib inline\n", "slopes.plot()" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "slopes.describe()" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (Anaconda)", "language": "python", "name": "anaconda3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.5" } }, "nbformat": 4, "nbformat_minor": 0 }