{ "cells": [ { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [ ], "source": [ "import numpy as np\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ppm
Time
2016-02-19 13:26:00NaN
2016-02-19 13:27:00718.0
2016-02-19 13:27:00NaN
2016-02-19 13:31:00337.0
2016-02-19 13:36:00332.0
\n", "
" ] }, "execution_count": 22, "metadata": { }, "output_type": "execute_result" } ], "source": [ "column_names = ['Time','ppm']\n", "year1CO2 = pd.read_csv('Netatmo2016CO2ONLY.csv', parse_dates=True, index_col=0, names=column_names)\n", "year1CO2.head()" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "column_names = ['Time','ppm']\n", "year2CO2= pd.read_csv('Netatmo2017CO2ONLY.csv', parse_dates=True, index_col=0, names=column_names)\n", "year2CO2.to_csv('2017CO2ONLY.csv')" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "year2 = pd.read_csv('2017CO2ONLY.csv', parse_dates=True, index_col=0,)\n", "#year2.head()" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ ], "source": [ "column_names = ['Time','ppm']\n", "year1CO2= pd.read_csv('Netatmo2016CO2ONLY.csv', parse_dates=True, index_col=0, names=column_names)\n", "year1CO2.to_csv('2016CO2ONLY.csv')\n" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ppm
Time
2016-02-19 13:26:00NaN
2016-02-19 13:27:00718.0
2016-02-19 13:27:00NaN
2016-02-19 13:31:00337.0
2016-02-19 13:36:00332.0
\n", "
" ] }, "execution_count": 26, "metadata": { }, "output_type": "execute_result" } ], "source": [ "year1 = pd.read_csv('2016CO2ONLY.csv', parse_dates=True, index_col=0,)\n", "year1.head()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ppm
Time
2016-02-19 13:26:00NaN
2016-02-19 13:27:00718.0
2016-02-19 13:27:00NaN
2016-02-19 13:31:00337.0
2016-02-19 13:36:00332.0
\n", "
" ] }, "execution_count": 28, "metadata": { }, "output_type": "execute_result" } ], "source": [ "year1.head()" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ppm
Time
2016-12-31 23:35:00483.0
2016-12-31 23:40:00485.0
2016-12-31 23:45:00489.0
2016-12-31 23:50:00475.0
2016-12-31 23:55:00475.0
\n", "
" ] }, "execution_count": 29, "metadata": { }, "output_type": "execute_result" } ], "source": [ "year1.tail()" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ppm
Time
2017-02-12 18:27:00484
2017-02-12 18:32:00486
2017-02-12 18:37:00469
2017-02-12 18:42:00485
2017-02-12 18:47:00480
\n", "
" ] }, "execution_count": 30, "metadata": { }, "output_type": "execute_result" } ], "source": [ "year2.tail()" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": true }, "outputs": [ ], "source": [ "year2.head()" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "collapsed": true }, "outputs": [ ], "source": [ ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (Anaconda)", "language": "python", "name": "anaconda3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.4" } }, "nbformat": 4, "nbformat_minor": 0 }