{
"cells": [
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": true
},
"outputs": [
],
"source": [
"import numpy as np\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
\n",
" \n",
" \n",
" | \n",
" ppm | \n",
"
\n",
" \n",
" Time | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 2016-02-19 13:26:00 | \n",
" NaN | \n",
"
\n",
" \n",
" 2016-02-19 13:27:00 | \n",
" 718.0 | \n",
"
\n",
" \n",
" 2016-02-19 13:27:00 | \n",
" NaN | \n",
"
\n",
" \n",
" 2016-02-19 13:31:00 | \n",
" 337.0 | \n",
"
\n",
" \n",
" 2016-02-19 13:36:00 | \n",
" 332.0 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 22,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"column_names = ['Time','ppm']\n",
"year1CO2 = pd.read_csv('Netatmo2016CO2ONLY.csv', parse_dates=True, index_col=0, names=column_names)\n",
"year1CO2.head()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"column_names = ['Time','ppm']\n",
"year2CO2= pd.read_csv('Netatmo2017CO2ONLY.csv', parse_dates=True, index_col=0, names=column_names)\n",
"year2CO2.to_csv('2017CO2ONLY.csv')"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"year2 = pd.read_csv('2017CO2ONLY.csv', parse_dates=True, index_col=0,)\n",
"#year2.head()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"column_names = ['Time','ppm']\n",
"year1CO2= pd.read_csv('Netatmo2016CO2ONLY.csv', parse_dates=True, index_col=0, names=column_names)\n",
"year1CO2.to_csv('2016CO2ONLY.csv')\n"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ppm | \n",
"
\n",
" \n",
" Time | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 2016-02-19 13:26:00 | \n",
" NaN | \n",
"
\n",
" \n",
" 2016-02-19 13:27:00 | \n",
" 718.0 | \n",
"
\n",
" \n",
" 2016-02-19 13:27:00 | \n",
" NaN | \n",
"
\n",
" \n",
" 2016-02-19 13:31:00 | \n",
" 337.0 | \n",
"
\n",
" \n",
" 2016-02-19 13:36:00 | \n",
" 332.0 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 26,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"year1 = pd.read_csv('2016CO2ONLY.csv', parse_dates=True, index_col=0,)\n",
"year1.head()"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ppm | \n",
"
\n",
" \n",
" Time | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 2016-02-19 13:26:00 | \n",
" NaN | \n",
"
\n",
" \n",
" 2016-02-19 13:27:00 | \n",
" 718.0 | \n",
"
\n",
" \n",
" 2016-02-19 13:27:00 | \n",
" NaN | \n",
"
\n",
" \n",
" 2016-02-19 13:31:00 | \n",
" 337.0 | \n",
"
\n",
" \n",
" 2016-02-19 13:36:00 | \n",
" 332.0 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 28,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"year1.head()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ppm | \n",
"
\n",
" \n",
" Time | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 2016-12-31 23:35:00 | \n",
" 483.0 | \n",
"
\n",
" \n",
" 2016-12-31 23:40:00 | \n",
" 485.0 | \n",
"
\n",
" \n",
" 2016-12-31 23:45:00 | \n",
" 489.0 | \n",
"
\n",
" \n",
" 2016-12-31 23:50:00 | \n",
" 475.0 | \n",
"
\n",
" \n",
" 2016-12-31 23:55:00 | \n",
" 475.0 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 29,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"year1.tail()"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ppm | \n",
"
\n",
" \n",
" Time | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 2017-02-12 18:27:00 | \n",
" 484 | \n",
"
\n",
" \n",
" 2017-02-12 18:32:00 | \n",
" 486 | \n",
"
\n",
" \n",
" 2017-02-12 18:37:00 | \n",
" 469 | \n",
"
\n",
" \n",
" 2017-02-12 18:42:00 | \n",
" 485 | \n",
"
\n",
" \n",
" 2017-02-12 18:47:00 | \n",
" 480 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 30,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"year2.tail()"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": true
},
"outputs": [
],
"source": [
"year2.head()"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": true
},
"outputs": [
],
"source": [
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (Anaconda)",
"language": "python",
"name": "anaconda3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.4"
}
},
"nbformat": 4,
"nbformat_minor": 0
}