{
"cells": [
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"df1 = pd.read_csv('NetAtmo_2016.csv', parse_dates = True,)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"df2 = pd.read_csv('NetAtmo_2017.csv', parse_dates = True)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Timestamp | \n",
" Timezone : America/Los_Angeles | \n",
" Temperature | \n",
" Humidity | \n",
" CO2 | \n",
" Noise | \n",
" Pressure | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1455917199 | \n",
" 2/19/16 13:26 | \n",
" 18.8 | \n",
" 76 | \n",
" NaN | \n",
" NaN | \n",
" 1015.7 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Timestamp Timezone : America/Los_Angeles Temperature Humidity CO2 \\\n",
"0 1455917199 2/19/16 13:26 18.8 76 NaN \n",
"\n",
" Noise Pressure \n",
"0 NaN 1015.7 "
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1.head(1)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Timestamp | \n",
" Time | \n",
" Temperature | \n",
" Humidity | \n",
" CO2 | \n",
" Noise | \n",
" Pressure | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1483257658 | \n",
" 1/1/17 0:00 | \n",
" 21.8 | \n",
" 34 | \n",
" 482 | \n",
" 39 | \n",
" 1009.1 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Timestamp Time Temperature Humidity CO2 Noise Pressure\n",
"0 1483257658 1/1/17 0:00 21.8 34 482 39 1009.1"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df2.head(1)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Timestamp | \n",
" Timezone : America/Los_Angeles | \n",
" Temperature | \n",
" Humidity | \n",
" CO2 | \n",
" Noise | \n",
" Pressure | \n",
" Time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1455917199 | \n",
" 2/19/16 13:26 | \n",
" 18.8 | \n",
" 76 | \n",
" NaN | \n",
" NaN | \n",
" 1015.7 | \n",
" 2/19/16 13:26 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Timestamp Timezone : America/Los_Angeles Temperature Humidity CO2 \\\n",
"0 1455917199 2/19/16 13:26 18.8 76 NaN \n",
"\n",
" Noise Pressure Time \n",
"0 NaN 1015.7 2/19/16 13:26 "
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1['Time'] = df1['Timezone : America/Los_Angeles']\n",
"df1.head(1)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" CO2 | \n",
" Time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" NaN | \n",
" 2/19/16 13:26 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" CO2 Time\n",
"0 NaN 2/19/16 13:26"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1.drop(df1.columns[[0,1,2,3,5,6]], axis =1, inplace = True)\n",
"df1.head(1)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Time | \n",
" CO2 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1/1/17 0:00 | \n",
" 482 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Time CO2\n",
"0 1/1/17 0:00 482"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df2.drop(df2.columns[[0,2,3,5,6]], axis =1, inplace = True)\n",
"df2.head(1)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"#df1['Time'] = pd.to_datetime(df1.Time)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"#df2['Time'] = pd.to_datetime(df2.Time)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" CO2 | \n",
" Time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" NaN | \n",
" 2/19/16 13:26 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" CO2 Time\n",
"0 NaN 2/19/16 13:26"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1.head(1)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Time | \n",
" CO2 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1/1/17 0:00 | \n",
" 482 | \n",
"
\n",
" \n",
" 1 | \n",
" 1/1/17 0:05 | \n",
" 491 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Time CO2\n",
"0 1/1/17 0:00 482\n",
"1 1/1/17 0:05 491"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df2.head(2)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"#df1.set_index('Time', inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
"#df2.set_index('Time', inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" CO2 | \n",
" Time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" NaN | \n",
" 2/19/16 13:26 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" CO2 Time\n",
"0 NaN 2/19/16 13:26"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1.head(1)"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Time | \n",
" CO2 | \n",
"
\n",
" \n",
" \n",
" \n",
" 10847 | \n",
" 2/12/17 18:47 | \n",
" 480 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Time CO2\n",
"10847 2/12/17 18:47 480"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df2.tail(1)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"df3 = pd.concat([df1,df2])"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" CO2 | \n",
" Time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" NaN | \n",
" 2/19/16 13:26 | \n",
"
\n",
" \n",
" 1 | \n",
" 718.0 | \n",
" 2/19/16 13:27 | \n",
"
\n",
" \n",
" 2 | \n",
" NaN | \n",
" 2/19/16 13:27 | \n",
"
\n",
" \n",
" 3 | \n",
" 337.0 | \n",
" 2/19/16 13:31 | \n",
"
\n",
" \n",
" 4 | \n",
" 332.0 | \n",
" 2/19/16 13:36 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" CO2 Time\n",
"0 NaN 2/19/16 13:26\n",
"1 718.0 2/19/16 13:27\n",
"2 NaN 2/19/16 13:27\n",
"3 337.0 2/19/16 13:31\n",
"4 332.0 2/19/16 13:36"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df3.head()"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" CO2 | \n",
" Time | \n",
"
\n",
" \n",
" \n",
" \n",
" 10843 | \n",
" 484.0 | \n",
" 2/12/17 18:27 | \n",
"
\n",
" \n",
" 10844 | \n",
" 486.0 | \n",
" 2/12/17 18:32 | \n",
"
\n",
" \n",
" 10845 | \n",
" 469.0 | \n",
" 2/12/17 18:37 | \n",
"
\n",
" \n",
" 10846 | \n",
" 485.0 | \n",
" 2/12/17 18:42 | \n",
"
\n",
" \n",
" 10847 | \n",
" 480.0 | \n",
" 2/12/17 18:47 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" CO2 Time\n",
"10843 484.0 2/12/17 18:27\n",
"10844 486.0 2/12/17 18:32\n",
"10845 469.0 2/12/17 18:37\n",
"10846 485.0 2/12/17 18:42\n",
"10847 480.0 2/12/17 18:47"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df3.tail()"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"df3.dropna(how ='any', inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" CO2 | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 100985.000000 | \n",
"
\n",
" \n",
" mean | \n",
" 547.646878 | \n",
"
\n",
" \n",
" std | \n",
" 304.511307 | \n",
"
\n",
" \n",
" min | \n",
" 201.000000 | \n",
"
\n",
" \n",
" 25% | \n",
" 362.000000 | \n",
"
\n",
" \n",
" 50% | \n",
" 438.000000 | \n",
"
\n",
" \n",
" 75% | \n",
" 615.000000 | \n",
"
\n",
" \n",
" max | \n",
" 2777.000000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" CO2\n",
"count 100985.000000\n",
"mean 547.646878\n",
"std 304.511307\n",
"min 201.000000\n",
"25% 362.000000\n",
"50% 438.000000\n",
"75% 615.000000\n",
"max 2777.000000"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df3.describe()"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" index | \n",
" CO2 | \n",
" Time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" 718.0 | \n",
" 2/19/16 13:27 | \n",
"
\n",
" \n",
" 1 | \n",
" 3 | \n",
" 337.0 | \n",
" 2/19/16 13:31 | \n",
"
\n",
" \n",
" 2 | \n",
" 4 | \n",
" 332.0 | \n",
" 2/19/16 13:36 | \n",
"
\n",
" \n",
" 3 | \n",
" 5 | \n",
" 328.0 | \n",
" 2/19/16 13:41 | \n",
"
\n",
" \n",
" 4 | \n",
" 6 | \n",
" 307.0 | \n",
" 2/19/16 13:46 | \n",
"
\n",
" \n",
" 5 | \n",
" 7 | \n",
" 296.0 | \n",
" 2/19/16 13:51 | \n",
"
\n",
" \n",
" 6 | \n",
" 8 | \n",
" 289.0 | \n",
" 2/19/16 13:56 | \n",
"
\n",
" \n",
" 7 | \n",
" 9 | \n",
" 280.0 | \n",
" 2/19/16 14:02 | \n",
"
\n",
" \n",
" 8 | \n",
" 10 | \n",
" 273.0 | \n",
" 2/19/16 14:07 | \n",
"
\n",
" \n",
" 9 | \n",
" 11 | \n",
" 272.0 | \n",
" 2/19/16 14:12 | \n",
"
\n",
" \n",
" 10 | \n",
" 12 | \n",
" 269.0 | \n",
" 2/19/16 14:17 | \n",
"
\n",
" \n",
" 11 | \n",
" 13 | \n",
" 267.0 | \n",
" 2/19/16 14:22 | \n",
"
\n",
" \n",
" 12 | \n",
" 14 | \n",
" 283.0 | \n",
" 2/19/16 14:27 | \n",
"
\n",
" \n",
" 13 | \n",
" 15 | \n",
" 284.0 | \n",
" 2/19/16 14:32 | \n",
"
\n",
" \n",
" 14 | \n",
" 16 | \n",
" 288.0 | \n",
" 2/19/16 14:37 | \n",
"
\n",
" \n",
" 15 | \n",
" 17 | \n",
" 290.0 | \n",
" 2/19/16 14:42 | \n",
"
\n",
" \n",
" 16 | \n",
" 18 | \n",
" 308.0 | \n",
" 2/19/16 14:47 | \n",
"
\n",
" \n",
" 17 | \n",
" 19 | \n",
" 304.0 | \n",
" 2/19/16 14:52 | \n",
"
\n",
" \n",
" 18 | \n",
" 20 | \n",
" 322.0 | \n",
" 2/19/16 14:57 | \n",
"
\n",
" \n",
" 19 | \n",
" 21 | \n",
" 319.0 | \n",
" 2/19/16 15:02 | \n",
"
\n",
" \n",
" 20 | \n",
" 22 | \n",
" 343.0 | \n",
" 2/19/16 15:07 | \n",
"
\n",
" \n",
" 21 | \n",
" 23 | \n",
" 359.0 | \n",
" 2/19/16 15:12 | \n",
"
\n",
" \n",
" 22 | \n",
" 24 | \n",
" 373.0 | \n",
" 2/19/16 15:17 | \n",
"
\n",
" \n",
" 23 | \n",
" 25 | \n",
" 378.0 | \n",
" 2/19/16 15:22 | \n",
"
\n",
" \n",
" 24 | \n",
" 26 | \n",
" 383.0 | \n",
" 2/19/16 15:27 | \n",
"
\n",
" \n",
" 25 | \n",
" 27 | \n",
" 383.0 | \n",
" 2/19/16 15:32 | \n",
"
\n",
" \n",
" 26 | \n",
" 28 | \n",
" 383.0 | \n",
" 2/19/16 15:37 | \n",
"
\n",
" \n",
" 27 | \n",
" 29 | \n",
" 393.0 | \n",
" 2/19/16 15:42 | \n",
"
\n",
" \n",
" 28 | \n",
" 30 | \n",
" 382.0 | \n",
" 2/19/16 15:47 | \n",
"
\n",
" \n",
" 29 | \n",
" 31 | \n",
" 393.0 | \n",
" 2/19/16 15:52 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 100955 | \n",
" 10818 | \n",
" 491.0 | \n",
" 2/12/17 16:21 | \n",
"
\n",
" \n",
" 100956 | \n",
" 10819 | \n",
" 489.0 | \n",
" 2/12/17 16:26 | \n",
"
\n",
" \n",
" 100957 | \n",
" 10820 | \n",
" 479.0 | \n",
" 2/12/17 16:31 | \n",
"
\n",
" \n",
" 100958 | \n",
" 10821 | \n",
" 487.0 | \n",
" 2/12/17 16:36 | \n",
"
\n",
" \n",
" 100959 | \n",
" 10822 | \n",
" 485.0 | \n",
" 2/12/17 16:41 | \n",
"
\n",
" \n",
" 100960 | \n",
" 10823 | \n",
" 495.0 | \n",
" 2/12/17 16:46 | \n",
"
\n",
" \n",
" 100961 | \n",
" 10824 | \n",
" 484.0 | \n",
" 2/12/17 16:51 | \n",
"
\n",
" \n",
" 100962 | \n",
" 10825 | \n",
" 496.0 | \n",
" 2/12/17 16:56 | \n",
"
\n",
" \n",
" 100963 | \n",
" 10826 | \n",
" 490.0 | \n",
" 2/12/17 17:01 | \n",
"
\n",
" \n",
" 100964 | \n",
" 10827 | \n",
" 496.0 | \n",
" 2/12/17 17:06 | \n",
"
\n",
" \n",
" 100965 | \n",
" 10828 | \n",
" 492.0 | \n",
" 2/12/17 17:11 | \n",
"
\n",
" \n",
" 100966 | \n",
" 10829 | \n",
" 481.0 | \n",
" 2/12/17 17:16 | \n",
"
\n",
" \n",
" 100967 | \n",
" 10830 | \n",
" 472.0 | \n",
" 2/12/17 17:21 | \n",
"
\n",
" \n",
" 100968 | \n",
" 10831 | \n",
" 489.0 | \n",
" 2/12/17 17:26 | \n",
"
\n",
" \n",
" 100969 | \n",
" 10832 | \n",
" 490.0 | \n",
" 2/12/17 17:31 | \n",
"
\n",
" \n",
" 100970 | \n",
" 10833 | \n",
" 492.0 | \n",
" 2/12/17 17:36 | \n",
"
\n",
" \n",
" 100971 | \n",
" 10834 | \n",
" 482.0 | \n",
" 2/12/17 17:41 | \n",
"
\n",
" \n",
" 100972 | \n",
" 10835 | \n",
" 475.0 | \n",
" 2/12/17 17:46 | \n",
"
\n",
" \n",
" 100973 | \n",
" 10836 | \n",
" 484.0 | \n",
" 2/12/17 17:51 | \n",
"
\n",
" \n",
" 100974 | \n",
" 10837 | \n",
" 485.0 | \n",
" 2/12/17 17:56 | \n",
"
\n",
" \n",
" 100975 | \n",
" 10838 | \n",
" 493.0 | \n",
" 2/12/17 18:02 | \n",
"
\n",
" \n",
" 100976 | \n",
" 10839 | \n",
" 478.0 | \n",
" 2/12/17 18:07 | \n",
"
\n",
" \n",
" 100977 | \n",
" 10840 | \n",
" 470.0 | \n",
" 2/12/17 18:12 | \n",
"
\n",
" \n",
" 100978 | \n",
" 10841 | \n",
" 485.0 | \n",
" 2/12/17 18:17 | \n",
"
\n",
" \n",
" 100979 | \n",
" 10842 | \n",
" 479.0 | \n",
" 2/12/17 18:22 | \n",
"
\n",
" \n",
" 100980 | \n",
" 10843 | \n",
" 484.0 | \n",
" 2/12/17 18:27 | \n",
"
\n",
" \n",
" 100981 | \n",
" 10844 | \n",
" 486.0 | \n",
" 2/12/17 18:32 | \n",
"
\n",
" \n",
" 100982 | \n",
" 10845 | \n",
" 469.0 | \n",
" 2/12/17 18:37 | \n",
"
\n",
" \n",
" 100983 | \n",
" 10846 | \n",
" 485.0 | \n",
" 2/12/17 18:42 | \n",
"
\n",
" \n",
" 100984 | \n",
" 10847 | \n",
" 480.0 | \n",
" 2/12/17 18:47 | \n",
"
\n",
" \n",
"
\n",
"
100985 rows × 3 columns
\n",
"
"
],
"text/plain": [
" index CO2 Time\n",
"0 1 718.0 2/19/16 13:27\n",
"1 3 337.0 2/19/16 13:31\n",
"2 4 332.0 2/19/16 13:36\n",
"3 5 328.0 2/19/16 13:41\n",
"4 6 307.0 2/19/16 13:46\n",
"5 7 296.0 2/19/16 13:51\n",
"6 8 289.0 2/19/16 13:56\n",
"7 9 280.0 2/19/16 14:02\n",
"8 10 273.0 2/19/16 14:07\n",
"9 11 272.0 2/19/16 14:12\n",
"10 12 269.0 2/19/16 14:17\n",
"11 13 267.0 2/19/16 14:22\n",
"12 14 283.0 2/19/16 14:27\n",
"13 15 284.0 2/19/16 14:32\n",
"14 16 288.0 2/19/16 14:37\n",
"15 17 290.0 2/19/16 14:42\n",
"16 18 308.0 2/19/16 14:47\n",
"17 19 304.0 2/19/16 14:52\n",
"18 20 322.0 2/19/16 14:57\n",
"19 21 319.0 2/19/16 15:02\n",
"20 22 343.0 2/19/16 15:07\n",
"21 23 359.0 2/19/16 15:12\n",
"22 24 373.0 2/19/16 15:17\n",
"23 25 378.0 2/19/16 15:22\n",
"24 26 383.0 2/19/16 15:27\n",
"25 27 383.0 2/19/16 15:32\n",
"26 28 383.0 2/19/16 15:37\n",
"27 29 393.0 2/19/16 15:42\n",
"28 30 382.0 2/19/16 15:47\n",
"29 31 393.0 2/19/16 15:52\n",
"... ... ... ...\n",
"100955 10818 491.0 2/12/17 16:21\n",
"100956 10819 489.0 2/12/17 16:26\n",
"100957 10820 479.0 2/12/17 16:31\n",
"100958 10821 487.0 2/12/17 16:36\n",
"100959 10822 485.0 2/12/17 16:41\n",
"100960 10823 495.0 2/12/17 16:46\n",
"100961 10824 484.0 2/12/17 16:51\n",
"100962 10825 496.0 2/12/17 16:56\n",
"100963 10826 490.0 2/12/17 17:01\n",
"100964 10827 496.0 2/12/17 17:06\n",
"100965 10828 492.0 2/12/17 17:11\n",
"100966 10829 481.0 2/12/17 17:16\n",
"100967 10830 472.0 2/12/17 17:21\n",
"100968 10831 489.0 2/12/17 17:26\n",
"100969 10832 490.0 2/12/17 17:31\n",
"100970 10833 492.0 2/12/17 17:36\n",
"100971 10834 482.0 2/12/17 17:41\n",
"100972 10835 475.0 2/12/17 17:46\n",
"100973 10836 484.0 2/12/17 17:51\n",
"100974 10837 485.0 2/12/17 17:56\n",
"100975 10838 493.0 2/12/17 18:02\n",
"100976 10839 478.0 2/12/17 18:07\n",
"100977 10840 470.0 2/12/17 18:12\n",
"100978 10841 485.0 2/12/17 18:17\n",
"100979 10842 479.0 2/12/17 18:22\n",
"100980 10843 484.0 2/12/17 18:27\n",
"100981 10844 486.0 2/12/17 18:32\n",
"100982 10845 469.0 2/12/17 18:37\n",
"100983 10846 485.0 2/12/17 18:42\n",
"100984 10847 480.0 2/12/17 18:47\n",
"\n",
"[100985 rows x 3 columns]"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df3.reset_index()"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"df3.to_csv('InfiltrationCleanedData.csv')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 1
}