{ "cells": [ { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "df1 = pd.read_csv('NetAtmo_2016.csv', parse_dates = True,)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "df2 = pd.read_csv('NetAtmo_2017.csv', parse_dates = True)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TimestampTimezone : America/Los_AngelesTemperatureHumidityCO2NoisePressure
014559171992/19/16 13:2618.876NaNNaN1015.7
\n", "
" ], "text/plain": [ " Timestamp Timezone : America/Los_Angeles Temperature Humidity CO2 \\\n", "0 1455917199 2/19/16 13:26 18.8 76 NaN \n", "\n", " Noise Pressure \n", "0 NaN 1015.7 " ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1.head(1)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TimestampTimeTemperatureHumidityCO2NoisePressure
014832576581/1/17 0:0021.834482391009.1
\n", "
" ], "text/plain": [ " Timestamp Time Temperature Humidity CO2 Noise Pressure\n", "0 1483257658 1/1/17 0:00 21.8 34 482 39 1009.1" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df2.head(1)" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TimestampTimezone : America/Los_AngelesTemperatureHumidityCO2NoisePressureTime
014559171992/19/16 13:2618.876NaNNaN1015.72/19/16 13:26
\n", "
" ], "text/plain": [ " Timestamp Timezone : America/Los_Angeles Temperature Humidity CO2 \\\n", "0 1455917199 2/19/16 13:26 18.8 76 NaN \n", "\n", " Noise Pressure Time \n", "0 NaN 1015.7 2/19/16 13:26 " ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1['Time'] = df1['Timezone : America/Los_Angeles']\n", "df1.head(1)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CO2Time
0NaN2/19/16 13:26
\n", "
" ], "text/plain": [ " CO2 Time\n", "0 NaN 2/19/16 13:26" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1.drop(df1.columns[[0,1,2,3,5,6]], axis =1, inplace = True)\n", "df1.head(1)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TimeCO2
01/1/17 0:00482
\n", "
" ], "text/plain": [ " Time CO2\n", "0 1/1/17 0:00 482" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df2.drop(df2.columns[[0,2,3,5,6]], axis =1, inplace = True)\n", "df2.head(1)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "#df1['Time'] = pd.to_datetime(df1.Time)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "#df2['Time'] = pd.to_datetime(df2.Time)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CO2Time
0NaN2/19/16 13:26
\n", "
" ], "text/plain": [ " CO2 Time\n", "0 NaN 2/19/16 13:26" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1.head(1)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TimeCO2
01/1/17 0:00482
11/1/17 0:05491
\n", "
" ], "text/plain": [ " Time CO2\n", "0 1/1/17 0:00 482\n", "1 1/1/17 0:05 491" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df2.head(2)" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "#df1.set_index('Time', inplace = True)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "#df2.set_index('Time', inplace = True)" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CO2Time
0NaN2/19/16 13:26
\n", "
" ], "text/plain": [ " CO2 Time\n", "0 NaN 2/19/16 13:26" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1.head(1)" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TimeCO2
108472/12/17 18:47480
\n", "
" ], "text/plain": [ " Time CO2\n", "10847 2/12/17 18:47 480" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df2.tail(1)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "df3 = pd.concat([df1,df2])" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CO2Time
0NaN2/19/16 13:26
1718.02/19/16 13:27
2NaN2/19/16 13:27
3337.02/19/16 13:31
4332.02/19/16 13:36
\n", "
" ], "text/plain": [ " CO2 Time\n", "0 NaN 2/19/16 13:26\n", "1 718.0 2/19/16 13:27\n", "2 NaN 2/19/16 13:27\n", "3 337.0 2/19/16 13:31\n", "4 332.0 2/19/16 13:36" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df3.head()" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CO2Time
10843484.02/12/17 18:27
10844486.02/12/17 18:32
10845469.02/12/17 18:37
10846485.02/12/17 18:42
10847480.02/12/17 18:47
\n", "
" ], "text/plain": [ " CO2 Time\n", "10843 484.0 2/12/17 18:27\n", "10844 486.0 2/12/17 18:32\n", "10845 469.0 2/12/17 18:37\n", "10846 485.0 2/12/17 18:42\n", "10847 480.0 2/12/17 18:47" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df3.tail()" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "df3.dropna(how ='any', inplace = True)" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CO2
count100985.000000
mean547.646878
std304.511307
min201.000000
25%362.000000
50%438.000000
75%615.000000
max2777.000000
\n", "
" ], "text/plain": [ " CO2\n", "count 100985.000000\n", "mean 547.646878\n", "std 304.511307\n", "min 201.000000\n", "25% 362.000000\n", "50% 438.000000\n", "75% 615.000000\n", "max 2777.000000" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df3.describe()" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
indexCO2Time
01718.02/19/16 13:27
13337.02/19/16 13:31
24332.02/19/16 13:36
35328.02/19/16 13:41
46307.02/19/16 13:46
57296.02/19/16 13:51
68289.02/19/16 13:56
79280.02/19/16 14:02
810273.02/19/16 14:07
911272.02/19/16 14:12
1012269.02/19/16 14:17
1113267.02/19/16 14:22
1214283.02/19/16 14:27
1315284.02/19/16 14:32
1416288.02/19/16 14:37
1517290.02/19/16 14:42
1618308.02/19/16 14:47
1719304.02/19/16 14:52
1820322.02/19/16 14:57
1921319.02/19/16 15:02
2022343.02/19/16 15:07
2123359.02/19/16 15:12
2224373.02/19/16 15:17
2325378.02/19/16 15:22
2426383.02/19/16 15:27
2527383.02/19/16 15:32
2628383.02/19/16 15:37
2729393.02/19/16 15:42
2830382.02/19/16 15:47
2931393.02/19/16 15:52
............
10095510818491.02/12/17 16:21
10095610819489.02/12/17 16:26
10095710820479.02/12/17 16:31
10095810821487.02/12/17 16:36
10095910822485.02/12/17 16:41
10096010823495.02/12/17 16:46
10096110824484.02/12/17 16:51
10096210825496.02/12/17 16:56
10096310826490.02/12/17 17:01
10096410827496.02/12/17 17:06
10096510828492.02/12/17 17:11
10096610829481.02/12/17 17:16
10096710830472.02/12/17 17:21
10096810831489.02/12/17 17:26
10096910832490.02/12/17 17:31
10097010833492.02/12/17 17:36
10097110834482.02/12/17 17:41
10097210835475.02/12/17 17:46
10097310836484.02/12/17 17:51
10097410837485.02/12/17 17:56
10097510838493.02/12/17 18:02
10097610839478.02/12/17 18:07
10097710840470.02/12/17 18:12
10097810841485.02/12/17 18:17
10097910842479.02/12/17 18:22
10098010843484.02/12/17 18:27
10098110844486.02/12/17 18:32
10098210845469.02/12/17 18:37
10098310846485.02/12/17 18:42
10098410847480.02/12/17 18:47
\n", "

100985 rows × 3 columns

\n", "
" ], "text/plain": [ " index CO2 Time\n", "0 1 718.0 2/19/16 13:27\n", "1 3 337.0 2/19/16 13:31\n", "2 4 332.0 2/19/16 13:36\n", "3 5 328.0 2/19/16 13:41\n", "4 6 307.0 2/19/16 13:46\n", "5 7 296.0 2/19/16 13:51\n", "6 8 289.0 2/19/16 13:56\n", "7 9 280.0 2/19/16 14:02\n", "8 10 273.0 2/19/16 14:07\n", "9 11 272.0 2/19/16 14:12\n", "10 12 269.0 2/19/16 14:17\n", "11 13 267.0 2/19/16 14:22\n", "12 14 283.0 2/19/16 14:27\n", "13 15 284.0 2/19/16 14:32\n", "14 16 288.0 2/19/16 14:37\n", "15 17 290.0 2/19/16 14:42\n", "16 18 308.0 2/19/16 14:47\n", "17 19 304.0 2/19/16 14:52\n", "18 20 322.0 2/19/16 14:57\n", "19 21 319.0 2/19/16 15:02\n", "20 22 343.0 2/19/16 15:07\n", "21 23 359.0 2/19/16 15:12\n", "22 24 373.0 2/19/16 15:17\n", "23 25 378.0 2/19/16 15:22\n", "24 26 383.0 2/19/16 15:27\n", "25 27 383.0 2/19/16 15:32\n", "26 28 383.0 2/19/16 15:37\n", "27 29 393.0 2/19/16 15:42\n", "28 30 382.0 2/19/16 15:47\n", "29 31 393.0 2/19/16 15:52\n", "... ... ... ...\n", "100955 10818 491.0 2/12/17 16:21\n", "100956 10819 489.0 2/12/17 16:26\n", "100957 10820 479.0 2/12/17 16:31\n", "100958 10821 487.0 2/12/17 16:36\n", "100959 10822 485.0 2/12/17 16:41\n", "100960 10823 495.0 2/12/17 16:46\n", "100961 10824 484.0 2/12/17 16:51\n", "100962 10825 496.0 2/12/17 16:56\n", "100963 10826 490.0 2/12/17 17:01\n", "100964 10827 496.0 2/12/17 17:06\n", "100965 10828 492.0 2/12/17 17:11\n", "100966 10829 481.0 2/12/17 17:16\n", "100967 10830 472.0 2/12/17 17:21\n", "100968 10831 489.0 2/12/17 17:26\n", "100969 10832 490.0 2/12/17 17:31\n", "100970 10833 492.0 2/12/17 17:36\n", "100971 10834 482.0 2/12/17 17:41\n", "100972 10835 475.0 2/12/17 17:46\n", "100973 10836 484.0 2/12/17 17:51\n", "100974 10837 485.0 2/12/17 17:56\n", "100975 10838 493.0 2/12/17 18:02\n", "100976 10839 478.0 2/12/17 18:07\n", "100977 10840 470.0 2/12/17 18:12\n", "100978 10841 485.0 2/12/17 18:17\n", "100979 10842 479.0 2/12/17 18:22\n", "100980 10843 484.0 2/12/17 18:27\n", "100981 10844 486.0 2/12/17 18:32\n", "100982 10845 469.0 2/12/17 18:37\n", "100983 10846 485.0 2/12/17 18:42\n", "100984 10847 480.0 2/12/17 18:47\n", "\n", "[100985 rows x 3 columns]" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df3.reset_index()" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [], "source": [ "df3.to_csv('InfiltrationCleanedData.csv')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 1 }