{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"#### Infiltration Calculations\n",
"\n",
"Things needed to make calculations more accurate: \n",
"- No inf or zeros present in data\n",
"- Find true asymtote for CO2_inside (seems to go below 400 \"outside ppm\")\n",
"- Get accurate ETC volume. (used 40,000 ft$^3$ here)\n",
"- Isolate Negative slopes\n",
"- Determine best days/times to isolate further\n",
"\n",
"\n",
"##### VolumetricFlowRate:\n",
"\n",
"$$CFM_{CO_2} = CFM_{allair} * ( \\% CO_2 outside - \\% CO_2 inside)$$\n",
"\n",
"$$ VolumetricFlowRate = CFM_{CO_2} / (\\% CO_2 outside - \\% CO_2 inside)$$\n",
"- $\\Delta CO_2$ = $CO_2$ cubic feet per minute (cfm)\n",
"- Volumetric Flow Rate = Total cubic feet per minute (cfm)\n",
"- $CO_2$_outside = proportion (unitless) \n",
"- $CO_2$_inside = proportion (unitless) \n",
"\n",
"\n",
"##### Infiltration:\n",
"$$ Infiltration = \\frac{\\Delta CO2}{(CO2\\_outside - CO2\\_inside)} * \\frac{1}{Volume} * \\frac{60 min}{hour}$$\n",
"\n",
"- Infiltration = \"air changes\" Per Minute ($\\large{\\frac{1}{min}}$)\n",
"- $\\Delta CO_2$ = $CO_2$ cubic feet per minute (cfm) \n",
"- $CO_2$_outside = proportion (unitless) \n",
"- $CO_2$_inside = proportion (unitless)\n",
"- Volume = ETC cubic feet ( $ft^{3}$ )"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"## More Data Manipulation \n",
"\n",
"Starting with just ppm and timestamp\n",
"\n",
"Finshing withing percent CO2 inside and outside, as well as cfm of CO2, and volume of ETC."
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" CO2 | \n",
" Time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 718.0 | \n",
" 2/19/16 13:27 | \n",
"
\n",
" \n",
" 1 | \n",
" 337.0 | \n",
" 2/19/16 13:31 | \n",
"
\n",
" \n",
" 2 | \n",
" 332.0 | \n",
" 2/19/16 13:36 | \n",
"
\n",
" \n",
" 3 | \n",
" 328.0 | \n",
" 2/19/16 13:41 | \n",
"
\n",
" \n",
" 4 | \n",
" 307.0 | \n",
" 2/19/16 13:46 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 58,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df1 = pd.read_csv('NetatmoCleanedForInfiltrationAnalysis.csv', parse_dates=True)\n",
"df1.drop(df1.columns[[0]], axis =1 , inplace = True)\n",
"df1.head()"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" CO2 | \n",
" Time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 718.0 | \n",
" 2016-02-19 13:27:00 | \n",
"
\n",
" \n",
" 1 | \n",
" 337.0 | \n",
" 2016-02-19 13:31:00 | \n",
"
\n",
" \n",
" 2 | \n",
" 332.0 | \n",
" 2016-02-19 13:36:00 | \n",
"
\n",
" \n",
" 3 | \n",
" 328.0 | \n",
" 2016-02-19 13:41:00 | \n",
"
\n",
" \n",
" 4 | \n",
" 307.0 | \n",
" 2016-02-19 13:46:00 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 59,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df1['Time'] = pd.to_datetime(df1.Time)\n",
"df1.head()"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ppm_inside | \n",
" Time | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 718.0 | \n",
" 2016-02-19 13:27:00 | \n",
"
\n",
" \n",
" 1 | \n",
" 337.0 | \n",
" 2016-02-19 13:31:00 | \n",
"
\n",
" \n",
" 2 | \n",
" 332.0 | \n",
" 2016-02-19 13:36:00 | \n",
"
\n",
" \n",
" 3 | \n",
" 328.0 | \n",
" 2016-02-19 13:41:00 | \n",
"
\n",
" \n",
" 4 | \n",
" 307.0 | \n",
" 2016-02-19 13:46:00 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 60,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df1.rename(index=str, columns={\"CO2\": \"ppm_inside\"}, inplace = True)\n",
"df1.head()"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ppm_inside | \n",
" Time | \n",
" TimeDelta | \n",
" ppm_outside | \n",
" ETC_Volume | \n",
" changeinppminside | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 718.0 | \n",
" 2016-02-19 13:27:00 | \n",
" NaN | \n",
" 400 | \n",
" 40000.0 | \n",
" NaN | \n",
"
\n",
" \n",
" 1 | \n",
" 337.0 | \n",
" 2016-02-19 13:31:00 | \n",
" 4.0 | \n",
" 400 | \n",
" 40000.0 | \n",
" -381.0 | \n",
"
\n",
" \n",
" 2 | \n",
" 332.0 | \n",
" 2016-02-19 13:36:00 | \n",
" 5.0 | \n",
" 400 | \n",
" 40000.0 | \n",
" -5.0 | \n",
"
\n",
" \n",
" 3 | \n",
" 328.0 | \n",
" 2016-02-19 13:41:00 | \n",
" 5.0 | \n",
" 400 | \n",
" 40000.0 | \n",
" -4.0 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 61,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df1['TimeDelta'] = df1['Time'].diff(1)\n",
"df1['TimeDelta'] = df1.TimeDelta / np.timedelta64(1, 'm')\n",
"df1['ppm_outside'] = 400\n",
"df1['ETC_Volume'] = 4e4\n",
"df1['changeinppminside'] = df1['ppm_inside'].diff(1)\n",
"df1.head(4)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"Cfm = percent change inside * Volume of ETC"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ppm_inside | \n",
" Time | \n",
" TimeDelta | \n",
" ppm_outside | \n",
" ETC_Volume | \n",
" changeinppminside | \n",
" percentchangeinside | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 718.0 | \n",
" 2016-02-19 13:27:00 | \n",
" NaN | \n",
" 400 | \n",
" 40000.0 | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" 1 | \n",
" 337.0 | \n",
" 2016-02-19 13:31:00 | \n",
" 4.0 | \n",
" 400 | \n",
" 40000.0 | \n",
" -381.0 | \n",
" -0.0381 | \n",
"
\n",
" \n",
" 2 | \n",
" 332.0 | \n",
" 2016-02-19 13:36:00 | \n",
" 5.0 | \n",
" 400 | \n",
" 40000.0 | \n",
" -5.0 | \n",
" -0.0005 | \n",
"
\n",
" \n",
" 3 | \n",
" 328.0 | \n",
" 2016-02-19 13:41:00 | \n",
" 5.0 | \n",
" 400 | \n",
" 40000.0 | \n",
" -4.0 | \n",
" -0.0004 | \n",
"
\n",
" \n",
" 4 | \n",
" 307.0 | \n",
" 2016-02-19 13:46:00 | \n",
" 5.0 | \n",
" 400 | \n",
" 40000.0 | \n",
" -21.0 | \n",
" -0.0021 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 62,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df1['percentchangeinside'] = df1['changeinppminside'] / 1e4\n",
"df1.head()"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ppm_inside | \n",
" Time | \n",
" TimeDelta | \n",
" ppm_outside | \n",
" ETC_Volume | \n",
" changeinppminside | \n",
" percentchangeinside | \n",
" CFM_CO2 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 718.0 | \n",
" 2016-02-19 13:27:00 | \n",
" NaN | \n",
" 400 | \n",
" 40000.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" 1 | \n",
" 337.0 | \n",
" 2016-02-19 13:31:00 | \n",
" 4.0 | \n",
" 400 | \n",
" 40000.0 | \n",
" -381.0 | \n",
" -0.0381 | \n",
" -381.0 | \n",
"
\n",
" \n",
" 2 | \n",
" 332.0 | \n",
" 2016-02-19 13:36:00 | \n",
" 5.0 | \n",
" 400 | \n",
" 40000.0 | \n",
" -5.0 | \n",
" -0.0005 | \n",
" -4.0 | \n",
"
\n",
" \n",
" 3 | \n",
" 328.0 | \n",
" 2016-02-19 13:41:00 | \n",
" 5.0 | \n",
" 400 | \n",
" 40000.0 | \n",
" -4.0 | \n",
" -0.0004 | \n",
" -3.2 | \n",
"
\n",
" \n",
" 4 | \n",
" 307.0 | \n",
" 2016-02-19 13:46:00 | \n",
" 5.0 | \n",
" 400 | \n",
" 40000.0 | \n",
" -21.0 | \n",
" -0.0021 | \n",
" -16.8 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 63,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df1['CFM_CO2'] = (df1['percentchangeinside'] / df1['TimeDelta'])* df1['ETC_Volume']\n",
"df1.head()"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ppm_inside | \n",
" Time | \n",
" TimeDelta | \n",
" ppm_outside | \n",
" ETC_Volume | \n",
" changeinppminside | \n",
" percentchangeinside | \n",
" CFM_CO2 | \n",
" percent_Inside | \n",
" percent_Outside | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 718.0 | \n",
" 2016-02-19 13:27:00 | \n",
" NaN | \n",
" 400 | \n",
" 40000.0 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 0.0718 | \n",
" 0.04 | \n",
"
\n",
" \n",
" 1 | \n",
" 337.0 | \n",
" 2016-02-19 13:31:00 | \n",
" 4.0 | \n",
" 400 | \n",
" 40000.0 | \n",
" -381.0 | \n",
" -0.0381 | \n",
" -381.0 | \n",
" 0.0337 | \n",
" 0.04 | \n",
"
\n",
" \n",
" 2 | \n",
" 332.0 | \n",
" 2016-02-19 13:36:00 | \n",
" 5.0 | \n",
" 400 | \n",
" 40000.0 | \n",
" -5.0 | \n",
" -0.0005 | \n",
" -4.0 | \n",
" 0.0332 | \n",
" 0.04 | \n",
"
\n",
" \n",
" 3 | \n",
" 328.0 | \n",
" 2016-02-19 13:41:00 | \n",
" 5.0 | \n",
" 400 | \n",
" 40000.0 | \n",
" -4.0 | \n",
" -0.0004 | \n",
" -3.2 | \n",
" 0.0328 | \n",
" 0.04 | \n",
"
\n",
" \n",
" 4 | \n",
" 307.0 | \n",
" 2016-02-19 13:46:00 | \n",
" 5.0 | \n",
" 400 | \n",
" 40000.0 | \n",
" -21.0 | \n",
" -0.0021 | \n",
" -16.8 | \n",
" 0.0307 | \n",
" 0.04 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 64,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df1['percent_Inside'] = df1['ppm_inside'] / 1e4\n",
"df1['percent_Outside'] = df1['ppm_outside'] / 1e4\n",
"df1.head()"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Time | \n",
" ETC_Volume | \n",
" CFM_CO2 | \n",
" percent_Inside | \n",
" percent_Outside | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2016-02-19 13:27:00 | \n",
" 40000.0 | \n",
" NaN | \n",
" 0.0718 | \n",
" 0.04 | \n",
"
\n",
" \n",
" 1 | \n",
" 2016-02-19 13:31:00 | \n",
" 40000.0 | \n",
" -381.0 | \n",
" 0.0337 | \n",
" 0.04 | \n",
"
\n",
" \n",
" 2 | \n",
" 2016-02-19 13:36:00 | \n",
" 40000.0 | \n",
" -4.0 | \n",
" 0.0332 | \n",
" 0.04 | \n",
"
\n",
" \n",
" 3 | \n",
" 2016-02-19 13:41:00 | \n",
" 40000.0 | \n",
" -3.2 | \n",
" 0.0328 | \n",
" 0.04 | \n",
"
\n",
" \n",
" 4 | \n",
" 2016-02-19 13:46:00 | \n",
" 40000.0 | \n",
" -16.8 | \n",
" 0.0307 | \n",
" 0.04 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 65,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df1.drop(df1.columns[[0, 2, 3, 5, 6,]], axis =1 , inplace = True)\n",
"df1.head()"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"count 100985.000000\n",
"mean 0.054765\n",
"std 0.030451\n",
"min 0.020100\n",
"25% 0.036200\n",
"50% 0.043800\n",
"75% 0.061500\n",
"max 0.277700\n",
"Name: percent_Inside, dtype: float64"
]
},
"execution_count": 66,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df1.percent_Inside.describe()"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"df1.to_csv('InfiltrationFINALCleanedData.csv')"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Time 2016-02-19 16:07:00\n",
"ETC_Volume 40000\n",
"CFM_CO2 12.8\n",
"percent_Inside 0.0409\n",
"percent_Outside 0.04\n",
"Name: 32, dtype: object"
]
},
"execution_count": 68,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df2 = pd.read_csv('InfiltrationFINALCleanedData.csv', parse_dates=True, index_col=0)\n",
"df2.iloc[32]"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ETC_Volume | \n",
" CFM_CO2 | \n",
" percent_Inside | \n",
" percent_Outside | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 13010.0 | \n",
" 13010.000000 | \n",
" 13010.000000 | \n",
" 1.301000e+04 | \n",
"
\n",
" \n",
" mean | \n",
" 40000.0 | \n",
" -10.777121 | \n",
" 0.095751 | \n",
" 4.000000e-02 | \n",
"
\n",
" \n",
" std | \n",
" 0.0 | \n",
" 18.090360 | \n",
" 0.031318 | \n",
" 8.195149e-15 | \n",
"
\n",
" \n",
" min | \n",
" 40000.0 | \n",
" -498.400000 | \n",
" 0.060100 | \n",
" 4.000000e-02 | \n",
"
\n",
" \n",
" 25% | \n",
" 40000.0 | \n",
" -12.000000 | \n",
" 0.069325 | \n",
" 4.000000e-02 | \n",
"
\n",
" \n",
" 50% | \n",
" 40000.0 | \n",
" -6.400000 | \n",
" 0.089700 | \n",
" 4.000000e-02 | \n",
"
\n",
" \n",
" 75% | \n",
" 40000.0 | \n",
" -3.200000 | \n",
" 0.111000 | \n",
" 4.000000e-02 | \n",
"
\n",
" \n",
" max | \n",
" 40000.0 | \n",
" -0.408371 | \n",
" 0.273300 | \n",
" 4.000000e-02 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 69,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df2 = df2[df2['percent_Inside']>(df2['percent_Outside'] + 0.02)]\n",
"df2 = df2[df2['CFM_CO2'] < 0]\n",
"df2 = df2.replace([np.inf, -np.inf], np.nan)\n",
"df2.dropna()\n",
"df2.describe()"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Time | \n",
" ETC_Volume | \n",
" CFM_CO2 | \n",
" percent_Inside | \n",
" percent_Outside | \n",
"
\n",
" \n",
" \n",
" \n",
" 844 | \n",
" 2016-02-22 12:12:00 | \n",
" 40000.0 | \n",
" -54.4 | \n",
" 0.0816 | \n",
" 0.04 | \n",
"
\n",
" \n",
" 846 | \n",
" 2016-02-22 12:22:00 | \n",
" 40000.0 | \n",
" -4.8 | \n",
" 0.0825 | \n",
" 0.04 | \n",
"
\n",
" \n",
" 847 | \n",
" 2016-02-22 12:27:00 | \n",
" 40000.0 | \n",
" -16.8 | \n",
" 0.0804 | \n",
" 0.04 | \n",
"
\n",
" \n",
" 848 | \n",
" 2016-02-22 12:32:00 | \n",
" 40000.0 | \n",
" -12.0 | \n",
" 0.0789 | \n",
" 0.04 | \n",
"
\n",
" \n",
" 849 | \n",
" 2016-02-22 12:37:00 | \n",
" 40000.0 | \n",
" -22.4 | \n",
" 0.0761 | \n",
" 0.04 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 70,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df2.head()"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 71,
"metadata": {
},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFtxJREFUeJzt3X+Q3HV9x/Hnq0mhTE4CNniNCW3iTGAKpM2YE5lpsXeFSkDGiNPSMAwQUSMKrbbpCEgrjJSZqKSOFIs9JIOMlpOKSBpCNTKe1JlGIDZyCUI5IA45MQyCoQc0NvDuH/s5WY7d3H6/e/sj93k9Znbu+/18P9/v9717O/va7+f73V1FBGZmlqdf63QBZmbWOQ4BM7OMOQTMzDLmEDAzy5hDwMwsYw4BM7OMOQTMzDLmEDAzy5hDwMwsY7M7XcBU5s2bF4sWLSq17gsvvMCcOXOmt6Bp4LqKcV3FuK5iZmJd27ZteyYijmqoc0R09W358uVR1ne/+93S67aS6yrGdRXjuoqZiXUBD0SDr7EeDjIzy5hDwMwsYw4BM7OMOQTMzDLmEDAzy5hDwMwsYw4BM7OMOQTMzDLmEDAzy1jXf22EmVknLbrsrprtu9a9q82VtIaPBMzMMuYQMDPLmEPAzCxjDgEzs4w5BMzMMuYQMDPLmEPAzCxjDgEzs4w5BMzMMuYQMDPLmEPAzCxjU4aApA2Snpa0o6rta5K2p9suSdtT+yJJL1Ut+2LVOssljUgalXSdJLXmLpmZWaMa+QK5m4HrgVsmGiLizyemJa0H9lb1fywiltXYzg3AB4EfAJuBFcDdxUs2M7PpMuWRQETcCzxba1l6N382cOuBtiFpPnB4RGyNiKASKO8pXq6ZmU2nZs8JnAzsiYhHq9oWS/ovSd+TdHJqWwDsruqzO7WZmVkHqfLGfIpO0iJgU0ScMKn9BmA0Itan+UOBnoj4uaTlwDeB44FjgHURcWrqdzJwaUScWWd/a4A1AL29vcuHhoZK3bnx8XF6enpKrdtKrqsY11WM6ypmqrpGxvbWbF+6YG6rSgKae7wGBga2RURfI31L/6iMpNnAe4HlE20RsQ/Yl6a3SXqMSgCMAQurVl+Y2mqKiEFgEKCvry/6+/tL1Tg8PEzZdVvJdRXjuopxXcVMVdfqej8qc279dWop+uM07Xq8mhkOOhV4OCJ+Ncwj6ShJs9L0W4AlwOMR8RTwvKST0nmE84E7m9i3mZlNg0YuEb0V+E/gWEm7Jb0/LVrF608IvwN4MF0y+nXgooiYOKn8EeBLwCjwGL4yyMys46YcDoqIc+q0r67Rdjtwe53+DwAn1FpmZjZT1Bv26Vb+xLCZWcYcAmZmGXMImJllzCFgZpYxh4CZWcYcAmZmGXMImJllzCFgZpYxh4CZWcYcAmZmGXMImJllzCFgZpYxh4CZWcYcAmZmGXMImJllzCFgZpYxh4CZWcZK/9C8mVnODrZfEKunkd8Y3iDpaUk7qtqukjQmaXu6nVG17HJJo5IekXRaVfuK1DYq6bLpvytmZlZUI8NBNwMrarR/LiKWpdtmAEnHUfkB+uPTOv8kaZakWcAXgNOB44BzUl8zM+ugRn5o/l5Jixrc3kpgKCL2AU9IGgVOTMtGI+JxAElDqe9DhSs2M7Np08yJ4UskPZiGi45MbQuAJ6v67E5t9drNzKyDFBFTd6ocCWyKiBPSfC/wDBDA1cD8iLhQ0vXA1oj4Sup3E3B32syKiPhAaj8PeHtEXFJnf2uANQC9vb3Lh4aGSt258fFxenp6Sq3bSq6rGNdVjOsqZqq6Rsb2tnT/SxfMrdnezOM1MDCwLSL6Gulb6uqgiNgzMS3pRmBTmh0Djq7qujC1cYD2WtsfBAYB+vr6or+/v0yZDA8PU3bdVnJdxbiuYlxXMVPVtbrFVwHtOrf2vtv1eJUaDpI0v2r2LGDiyqGNwCpJh0paDCwB7gPuB5ZIWizpEConjzeWL9vMzKbDlEcCkm4F+oF5knYDVwL9kpZRGQ7aBXwIICJ2SrqNygnf/cDFEfFy2s4lwLeAWcCGiNg57ffGzMwKaeTqoHNqNN90gP7XANfUaN8MbC5UnZmZtZS/NsLMLGMOATOzjDkEzMwy5hAwM8uYQ8DMLGMOATOzjDkEzMwy5hAwM8uYQ8DMLGMOATOzjDkEzMwy5hAwM8tYqd8TMDM7WC2a9PsAa5fuZ/Vld7Fr3bs6VFFn+UjAzCxjDgEzs4w5BMzMMuYQMDPLmEPAzCxjDgEzs4xNGQKSNkh6WtKOqrbPSnpY0oOS7pB0RGpfJOklSdvT7YtV6yyXNCJpVNJ1ktSau2RmZo1q5EjgZmDFpLYtwAkR8XvAfwOXVy17LCKWpdtFVe03AB8ElqTb5G2amVmbTRkCEXEv8Oyktm9HxP40uxVYeKBtSJoPHB4RWyMigFuA95Qr2czMposqr8lTdJIWAZsi4oQay/4N+FpEfCX120nl6OB54G8j4j8k9QHrIuLUtM7JwKURcWad/a0B1gD09vYuHxoaKn7PgPHxcXp6ekqt20quqxjXVYzrOrCRsb2vme89DPa8BEsXzG2o/3Srt99mHq+BgYFtEdHXSN+mvjZC0hXAfuCrqekp4Lcj4ueSlgPflHR80e1GxCAwCNDX1xf9/f2l6hseHqbsuq3kuopxXcW4rgNbXeNrI9aPzGbXuf0N9Z9u9fbbrserdAhIWg2cCZyShniIiH3AvjS9TdJjwDHAGK8dMlqY2szMrINKXSIqaQXwceDdEfFiVftRkmal6bdQOQH8eEQ8BTwv6aR0VdD5wJ1NV29mZk2Z8khA0q1APzBP0m7gSipXAx0KbElXem5NVwK9A/iUpP8DXgEuioiJk8ofoXKl0WHA3elmZmYdNGUIRMQ5NZpvqtP3duD2OsseAF53YtnMzDrHnxg2M8uYQ8DMLGMOATOzjDkEzMwy5hAwM8uYQ8DMLGMOATOzjDkEzMwy5hAwM8uYQ8DMLGMOATOzjDkEzMwy5hAwM8uYQ8DMLGMOATOzjDkEzMwy5hAwM8uYQ8DMLGMNhYCkDZKelrSjqu2NkrZIejT9PTK1S9J1kkYlPSjprVXrXJD6Pyrpgum/O2ZmVkSjRwI3AysmtV0G3BMRS4B70jzA6cCSdFsD3ACV0KDyI/VvB04ErpwIDjMz64yGQiAi7gWendS8Evhymv4y8J6q9luiYitwhKT5wGnAloh4NiKeA7bw+mAxM7M2auacQG9EPJWmfwb0pukFwJNV/XantnrtZmbWIYqIxjpKi4BNEXFCmv9FRBxRtfy5iDhS0iZgXUR8P7XfA1wK9AO/ERF/n9r/DngpIq6tsa81VIaS6O3tXT40NFTqzo2Pj9PT01Nq3VZyXcW4rmJc14GNjO19zXzvYbDnJVi6YG5D/adbvf0283gNDAxsi4i+RvrOLrWHij2S5kfEU2m45+nUPgYcXdVvYWoboxIE1e3DtTYcEYPAIEBfX1/09/fX6jal4eFhyq7bSq6rGNdVjOs6sNWX3fWa+bVL97N+ZDa7zu1vqP90q7ffdj1ezQwHbQQmrvC5ALizqv38dJXQScDeNGz0LeCdko5MJ4TfmdrMzKxDGjoSkHQrlXfx8yTtpnKVzzrgNknvB34CnJ26bwbOAEaBF4H3AUTEs5KuBu5P/T4VEZNPNpuZZWVRnSONm1fMacv+GwqBiDinzqJTavQN4OI629kAbGi4OjMzayl/YtjMLGMOATOzjDkEzMwy5hAwM8uYQ8DMLGMOATOzjDkEzMwy5hAwM8uYQ8DMLGMOATOzjDkEzMwy5hAwM8uYQ8DMLGMOATOzjDkEzMwy5hAwM8uYQ8DMLGMOATOzjJUOAUnHStpedXte0sckXSVprKr9jKp1Lpc0KukRSadNz10wM7OyGvqN4Voi4hFgGYCkWcAYcAeVH5b/XERcW91f0nHAKuB44M3AdyQdExEvl63BzMyaM13DQacAj0XETw7QZyUwFBH7IuIJYBQ4cZr2b2ZmJUxXCKwCbq2av0TSg5I2SDoytS0Anqzqszu1mZlZhygimtuAdAjwU+D4iNgjqRd4BgjgamB+RFwo6Xpga0R8Ja13E3B3RHy9xjbXAGsAent7lw8NDZWqbXx8nJ6enlLrtpLrKsZ1FeO6DmxkbO9r5nsPgz0vwdIFcxvq3y6L584q/XgNDAxsi4i+RvqWPidQ5XTghxGxB2DiL4CkG4FNaXYMOLpqvYWp7XUiYhAYBOjr64v+/v5ShQ0PD1N23VZyXcW4rmJc14Gtvuyu18yvXbqf9SOz2XVuf0P92+XmFXPa8nhNx3DQOVQNBUmaX7XsLGBHmt4IrJJ0qKTFwBLgvmnYv5mZldTUkYCkOcCfAB+qav6MpGVUhoN2TSyLiJ2SbgMeAvYDF/vKIDOzzmoqBCLiBeA3J7Wdd4D+1wDXNLNPMzObPv7EsJlZxhwCZmYZcwiYmWXMIWBmljGHgJlZxhwCZmYZcwiYmWXMIWBmljGHgJlZxhwCZmYZcwiYmWXMIWBmljGHgJlZxqbjR2XMzFpqUZ0fdtm17l1trmTm8ZGAmVnGHAJmZhlzCJiZZcznBMzsoOVzBc3zkYCZWcaaDgFJuySNSNou6YHU9kZJWyQ9mv4emdol6TpJo5IelPTWZvdvZmblTdeRwEBELIuIvjR/GXBPRCwB7knzAKcDS9JtDXDDNO3fzMxKaNU5gZVAf5r+MjAMXJrab4mIALZKOkLS/Ih4qkV1mJk1pN75hZlOldfjJjYgPQE8BwTwzxExKOkXEXFEWi7guYg4QtImYF1EfD8tuwe4NCIemLTNNVSOFOjt7V0+NDRUqrbx8XF6enrK3rWWcV3FuK5iZmJdI2N7C/VfumBuw9vqPQz2vFSqrJZaPHdW6cdrYGBgW9XIzAFNx5HAH0bEmKQ3AVskPVy9MCJCUqGkiYhBYBCgr68v+vv7SxU2PDxM2XVbyXUV47qKmYl1rS74Ln3XufX3M3lba5fuZ/1I910oefOKOW35PzZ9TiAixtLfp4E7gBOBPZLmA6S/T6fuY8DRVasvTG1mZtYBTYWApDmS3jAxDbwT2AFsBC5I3S4A7kzTG4Hz01VCJwF7fT7AzKxzmj0G6gXuqAz7Mxv4l4j4d0n3A7dJej/wE+Ds1H8zcAYwCrwIvK/J/ZuZWROaCoGIeBz4/RrtPwdOqdEewMXN7NPMzKaPPzFsZpYxh4CZWcYcAmZmGXMImJllzCFgZpYxh4CZWcYcAmZmGXMImJllzCFgZpYxh4CZWcYcAmZmGXMImJllrPt+ScHMrEm5/lRkGT4SMDPLmEPAzCxjDgEzs4w5BMzMMuYQMDPLWOkQkHS0pO9KekjSTkkfTe1XSRqTtD3dzqha53JJo5IekXTadNwBMzMrr5lLRPcDayPih5LeAGyTtCUt+1xEXFvdWdJxwCrgeODNwHckHRMRLzdRg5mZNaH0kUBEPBURP0zT/wP8GFhwgFVWAkMRsS8ingBGgRPL7t/MzJqniGh+I9Ii4F7gBOCvgdXA88ADVI4WnpN0PbA1Ir6S1rkJuDsivl5je2uANQC9vb3Lh4aGStU1Pj5OT09PqXVbyXUV47qKmYl1jYztneZqXtV7GOx5qWWbL23x3FmlH6+BgYFtEdHXSN+mPzEsqQe4HfhYRDwv6QbgaiDS3/XAhUW2GRGDwCBAX19f9Pf3l6pteHiYsuu2kusqxnUVczDUVe8TvbvWvatm++oWfgJ47dL9rB/pvi9PuHnFnLb8H5u6OkjSr1MJgK9GxDcAImJPRLwcEa8AN/LqkM8YcHTV6gtTm5mZdUgzVwcJuAn4cUT8Q1X7/KpuZwE70vRGYJWkQyUtBpYA95Xdv5mZNa+ZY6A/AM4DRiRtT22fAM6RtIzKcNAu4EMAEbFT0m3AQ1SuLLrYVwaZmXVW6RCIiO8DqrFo8wHWuQa4puw+zcxsenXf2RAzO+gUPdFr3cNfG2FmljGHgJlZxjwcZGYtUz1MtHbp/pZe72/lOATMrGv4ZyHbz8NBZmYZcwiYmWXMIWBmljGHgJlZxhwCZmYZcwiYmWXMl4ia2ev4ayDy4RAwy5ivyzeHgNkMMfGCXuuTuX4Hb/X4nICZWcZ8JGCWAQ/7WD0OAbM2mQknWx0mM49DwKxL+QXX2qHtISBpBfB5YBbwpYhY1+4azGop+k59ZGxvza9GPpje2Zu1NQQkzQK+APwJsBu4X9LGiHionXXY1Do1dFFrv1N9D329mjr1Trrofv2O3zqp3UcCJwKjEfE4gKQhYCXQ1SFwMI3ldtOLd7v4RdSsvHaHwALgyar53cDbW7Wzeofr06Xsi8/kd7Zl3skWfVFvpNZGfvkpxxfcevd57dI2F2LWAoqI9u1M+lNgRUR8IM2fB7w9Ii6Z1G8NsCbNHgs8UnKX84BnSq7bSq6rGNdVjOsqZibW9TsRcVQjHdt9JDAGHF01vzC1vUZEDAKDze5M0gMR0dfsdqab6yrGdRXjuorJva52f2L4fmCJpMWSDgFWARvbXIOZmSVtPRKIiP2SLgG+ReUS0Q0RsbOdNZiZ2ava/jmBiNgMbG7T7poeUmoR11WM6yrGdRWTdV1tPTFsZmbdxd8iamaWsRkXApKWSdoqabukBySdmNol6TpJo5IelPTWNtf1tVTTdkm7JG2vWnZ5qusRSae1s660/7+Q9LCknZI+00V1XSVprOpxO6Nbaks1rJUUkual+U4/x65O+90u6duS3twldX02Pb8elHSHpCOqlnXs/yjpz9Jz/hVJfZOWdfq5vyLte1TSZS3dWUTMqBvwbeD0NH0GMFw1fTcg4CTgBx2scT3wyTR9HPAj4FBgMfAYMKuNtQwA3wEOTfNv6oa6Ug1XAX9To70bajuaygUOPwHmdcNzDDi8avovgS92SV3vBGan6U8Dn+6G/yPwu1Q+hzQM9HXL84vKRTOPAW8BDkm1HNeq/c24IwEggMPT9Fzgp2l6JXBLVGwFjpA0v93FSRJwNnBrVV1DEbEvIp4ARql8vUa7fBhYFxH7ACLi6S6p60C6obbPAR+n8nyrrqtjz7GIeL5qdk5VbZ2u69sRsT/NbqXy+aCJujr2f4yIH0dErQ+idvr59auv14mIXwITX6/TEjMxBD4GfFbSk8C1wOWpvdZXVixoc20AJwN7IuLRNN/puo4BTpb0A0nfk/S2LqlrwiVpGGGDpCNTW0drk7QSGIuIH01a1PHHTNI16bl/LvDJbqmryoVUjkqgu+qq1um62rr/g/L3BCR9B/itGouuAE4B/ioibpd0NnATcGqn64qIO9P0Obx6FNAWUzxes4E3UhkmeBtwm6S3dEltNwBXU3lHezWVYbQLu6CuT1AZ4mi7qZ5jEXEFcIWky4FLgCu7oa7U5wpgP/DVdtTUaF25OyhDICLqvqhLugX4aJr9V+BLabqhr6xoVV2pttnAe4HlVc0drUvSh4FvRGUw8j5Jr1D5zpKW1zVVbZPqvBHYlGY79phJWkplnPhHlZE9FgI/TBcgdPw5VuWrVD6Pc2U31CVpNXAmcEp6rtENddXRlud+t+x/Jg4H/RT4ozT9x8DEsMtG4Px0pcRJwN6IeKrNtZ0KPBwRu6vaNgKrJB0qaTGwBLivjTV9k8rJYSQdQ+VE1DNdUBeTxq3PAnak6Y7VFhEjEfGmiFgUEYuoHKq/NSJ+RoefY5KWVM2uBB5O052uawWV8yfvjogXqxZ1/DlWR6frauvX6xyURwJT+CDw+fSu+3959dtIN1O5SmIUeBF4XwdqW8WkoaCI2CnpNiq/qbAfuDgiXm5jTRuADZJ2AL8ELkjv1DpdF8BnJC2jMhy0C/gQdMVjVk+nn2PrJB0LvELlqqWLuqSu66lcabMlHT1tjYiLOv1/lHQW8I/AUcBdkrZHxGmdriva/PU6/sSwmVnGZuJwkJmZNcghYGaWMYeAmVnGHAJmZhlzCJiZZcwhYGaWMYeAmVnGHAJmZhn7fwWp4UdtlY4dAAAAAElFTkSuQmCC"
},
"execution_count": 71,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df2['CFM_CO2'].hist(bins = 50, range = (-80, 0))"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ETC_Volume | \n",
" CFM_CO2 | \n",
" percent_Inside | \n",
" percent_Outside | \n",
" CFM_ETC | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 13010.0 | \n",
" 13010.000000 | \n",
" 13010.000000 | \n",
" 1.301000e+04 | \n",
" 13010.000000 | \n",
"
\n",
" \n",
" mean | \n",
" 40000.0 | \n",
" -10.777121 | \n",
" 0.095751 | \n",
" 4.000000e-02 | \n",
" -230.943259 | \n",
"
\n",
" \n",
" std | \n",
" 0.0 | \n",
" 18.090360 | \n",
" 0.031318 | \n",
" 8.195149e-15 | \n",
" 394.273245 | \n",
"
\n",
" \n",
" min | \n",
" 40000.0 | \n",
" -498.400000 | \n",
" 0.060100 | \n",
" 4.000000e-02 | \n",
" -16950.495050 | \n",
"
\n",
" \n",
" 25% | \n",
" 40000.0 | \n",
" -12.000000 | \n",
" 0.069325 | \n",
" 4.000000e-02 | \n",
" -261.949742 | \n",
"
\n",
" \n",
" 50% | \n",
" 40000.0 | \n",
" -6.400000 | \n",
" 0.089700 | \n",
" 4.000000e-02 | \n",
" -136.850291 | \n",
"
\n",
" \n",
" 75% | \n",
" 40000.0 | \n",
" -3.200000 | \n",
" 0.111000 | \n",
" 4.000000e-02 | \n",
" -65.573770 | \n",
"
\n",
" \n",
" max | \n",
" 40000.0 | \n",
" -0.408371 | \n",
" 0.273300 | \n",
" 4.000000e-02 | \n",
" -4.208311 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 72,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df2['CFM_ETC'] = df2['CFM_CO2'] / (df2['percent_Inside'] - df2['percent_Outside'])\n",
"df2.describe()"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 73,
"metadata": {
},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAD8CAYAAACPWyg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmcHHWd//HXZ6bnTDK57xBykBASjpAMkIAESAIEEAMIEkAIihsR2UXR1UR+Lq7CY9F112N1wbAooCiyIIICIofKKgZMTDgChAwhQEIgJ7mPycz390d/e1LdXd3TNT093TN5Px+Pfkz1t47+9lR1fep71LfMOYeIiEgUZcXOgIiIdD4KHiIiEpmCh4iIRKbgISIikSl4iIhIZAoeIiISmYKHiIhEpuAhIiKRKXiIiEhksWJnoFD69evnRowYUexsiIh0KkuWLNnonOvf2nJdNniMGDGCxYsXFzsbIiKdipm9lctyqrYSEZHIFDxERCQyBQ8REYlMwUNERCJT8BARkcg6VfAws1lmtsLMGsxsfrHzIyJysOo0wcPMyoEfAmcB44FLzGx8cXMlInJw6kz3eRwPNDjnVgGY2b3AbOCV9v6gy/5nEX9p2MSnp43irU27uPXjkzAzvvbwcu58djX9ulcysK6a31z7IcrKjG17Grnvb+8wZVRfDhvQneqK8qzbf2vTTlZv2sWhfWrZuGMvk4b3pqzMWuaveG87j760jmtOG01VrJz9Tc3sb3Zc8ePnuXzKoZx7zBAAtu5u5Fd/X8PU0X1Z8tYWPlZ/CBXlZby0Zivn/uDPADz+uWmMHdgdM2PH3v28t3UPhw3onpSfPY1NPPvGRsYM6MGTr77PJ04aCYBzjuXvbuPQvrVUxcqpjJW1LN+wfgd/XLGea6ePabf/e3tpbGrmg12NVFeUURUrp6LcMLPWVywBn/7pYr578bHUVB44hvbub+LXS9fywa5GRvfvzszxA1vm7WlsYtk7HzCsdw1/WLGBy6ccyuvvb6dbVYwhPav5v5Ub6de9ivFD6vjzyo3c/n+r+P6cY/nd8nU8+tJ73H5FPb9/5T2u/flSzps4hNnHDuXYQ3rRq7aS9dv38MzrG/nS/S9w9ydPYES/Wob1rqW52fHOll1s272fmspy6qpjDKirBuBbv3uNlet38MGufexvdowd0INbPnoUIxc8CsC986YwZ+Einvj8NMYM7MGfXt/A3B8/37H/5CyOH9mH59/cDMCph/fni2cczrceX8H1p49l9cad/PWNTfy5YSPfuXgiRw3tCUBNZfw3+qfXN3Da4QNwQHlZ+x1vO/fuZ9b3nuGr54zn2OG96V4VSzo+lry1hY/e+iy//ccPMaJfN2Jl1uo5qD1YZ3mGuZldCMxyzn3Kv78cOME5d21gmXnAPIDhw4dPfuutnO51SfL0a+/zyTuTby7sVlnOA9ecyKzv/l/a8jecfQQ3P/pqUtrqW87JuP2mZsforzyalHbexCF8d86xLe9HzH+kZfrUw/vzxxUbkpb/64Lp1FVXMOHGx9O2v/qWc5LWB/jH6YfxhTMOT0r/zsXHcP6xw9I+D+CuTx7PKWP789CytVx377KW9PpDe/P25l2s3763Je3bFx3DhZOHZfy+hfJvj77K8L61XHbCoWnzUr8PQFWsjMpYPJhUxcoC7w+kV+aUfuB9VY7LtfwtL8saxMZ99TH2NDYDB46hP7y2nk/c+bek5QbVVTPn+EOYMKQn/3B38rH6vTkTk/ZZwrc+ejRfeuDF1v+x3i/nTeHihYvS0p/559O44NZn2bhjb1L6X+ZPZ/22PZz/38/m/Bkv3HgGx/zr73NevlR97dzxfO03ydewz39lRktAzVfq8Ty0Vw1/mT+dH//5Tb7+2/Br52znoNaY2RLnXH1ry3WmkkernHMLgYUA9fX1bYqKNz/yalrazn1N/OaFd8OXfzR9+aAPdu1j6dsfsPTtLfz97Q9Y9s4Hacv8etm79KqtZP5Z45KuGCpjZby9aVfa8lP/7enWvkaS/3q6gS+ccXhS2ud/+UJL8Ej1uXuXsvRfzkg7Cb29eRenjO3P8D61/McTrwOwaNWmogSPHz2zCoBLjx+e8YT8/845gr37m/2riX1++sDfppb3uxub2Lq7McNyzexram6XfFfGyqgqL6OqIh5MqirK/d+ylsARdNMj6SeH9dv38L2nVhJ23RcWOIBIgQPgd8vfC02f9u9/CE0/+3v/R/eqaKeTny2KfnFXilIDB8A7W3blHTz27m9i5fs70tLXfrAbIGPg6CidKXisBQ4JvB/m09rVGxt2hqZnKqDd9vHJXP2zJUlpP3/ubf7+9hb+/vYWVvntlRmMG1THeccO4WeL3k7bzp3PrmbRqk18/5IDJZB9+5t5+ounpl15/NsFR7F1dyO3PPZazt/r/W17cl52QI/wg37KqL78+0XHALQEj+bm4pZcT7rlaU4bN4AZRwxg6qh+ScX5T508qt0+p7nZsa8pGFTCg0x6elNLAGttuTC796Wn/+DSSRw/sg/1Nz2ZNq9XbQUf7GpMSx9UV817EY4BIzwgLzhrHP8Wctxt3d3I1t3pn5vN0rfTL6S6irKI1aQ79u7nlXe3sfzdrSx/dxvL391Gw/rtNDa17fe1v6mZWHlhm7Q7U/D4GzDGzEYSDxpzgEs76sP/0rAxNH3WkYPS0r7y4Ev06VbJpOG9+OikYUwa3pujh/Wkm78ySw0eM48YyGUnDOef73+Bc//rz63m5ZLjhwOEBo81W9JLKgDTv/3HVrebUFsVXl/655D/QXORqj37dqtk0859HDWsJw8uXcs9z71NVayME0f3LcjnlZUZ1WXlBa1LDl4kNDY1U1FeRlPI/7e8zOjXvYpxg3rw2nvbk+ZdddLIlsAe9MUzD+eL//tCznnJVGX/6VNGhwaPBz5zIh+9NfcqK4C/vhH+m+psjh3eKy0QZgseG3fs9QEiHiheeXcbb248cNHat1sl44fUccrYUUwYUsc//mJp5Dzd89zbzD1xROT1oug0wcM5t9/MrgUeB8qBHzvnlnfU57+wZmvOy/7pn09leJ/anBtpK2PGaeMG8Nh10/ji/77An17f0PpKGVxye3o9NcRLDU+9tj6nbWS6Ity8c19aWpQLI+ccexqb2blvP7v3NbFz33527m1qmU76u7eJXY372bU3OK+J3X6dTT4vP7q8nr37m3hu1Waefm09T+f4HUvd+9v2MKx3LU0hJbuYP7OHxe1MV5tR2zaj9i+ItaGBeGdIqaozmnPcIWm/GbP4/3zNlt1JpYnl727l/W0H2ouG9a5hwpA6zj92KBOG1DFhSE8G1lUlnTvaEjwG92yf9pZsOk3wAHDOPQo82uqCRXZo326Rlk+cIPr3qOInVx7HqK+0/St+sDO96qBHdYw7rjwutCE5X7954V0G96xm594DJ/9d+5oCr0SA2M+uxqaM1X9hqmJl1FaWU1sZi/+tilFbUc6QXhW8sm5bYLlypo3tz7Sx/bnx3PF8/bev0K97Vbt/1460bmvm4JGwvzm9jaRHdfhPOmoJcdOO9AuFbNqzM9sDn5nKR2/9a17bqKuOsW3P/nbKUXZnHzWYLz/wUlLanIWLiJVZSx7KDA4b0J0TR/djwpA6xg+pY8LgnvSsrShIns6YkF4j0t46VfAopkx1yW0xbWx/ngmULoJtscEuuyP7RQtCAHd+8vi06oO2XBVG8dO/vuVP7uXUVsTifyvL6dOtMunk3y0RAIIBIWW6m++GWFtRnrXONlMgNDNuPHdCob5qh3nXN4qGBY9EUlhc6V1bGbq9qNVt72So/swkW5CL4tTD+zP50D55bWP1Ledw6e2LePaNTe2Sp9b0qE4PALv2NXHpCcNbShPjBvXokO6zHUnBI0X/HlVs2J7cDbFHdYzbPj6ZOSFdF9viJ1ceR2NTM+O++jsg81XhwLroV8+TD+2dlpbtJJxvV+2ainJe/casvLYh6a67dxmzJw4NDRCJfdave2VSXTlkbqvIFFR6VMfYta8p7eQ/aXhv/rZ6S875bUvsOHxgD1a8n9xm8z9XhPcQPevIQTz2cngPsKB7PnUCAD+8dBJ/XbWJa+75e/SMtUFtZTm7AtVwt19Rz+mB+3HaW3sF63x0mjvMO0pdSLH/+a/MZMKQurT0Y4f3atNnlKfcxLM/w4GQSP6XD4/n6GE92/RZABUhZ5R+3eMnk+178yvaD2hDgJPchVVNJY6WCUPSj4n+PcL3R6ZqpXknjwotmW6MWG2V7SLklLHhD6U78bD0zg1hFzrVFWU591466bB+APTuVsnZRw3OaZ32cMM5RyS9rylwKWPLrmj7pxAUPFKk/gaOH9Enqftn0LhBPdLShvaqifyZGbu7+uRPfmgkD1/7IX561fE88JkTM25n5hEDQtPLy9N/eIkTz+aQk8TnZuZ+1/jk4eklHWk/9SFVONkKi0cMTr/Igcxdbz9z6mhOGJV+Et+QchNga7JdCFdkKPmeNLpfxnW6BX5zsbIybvzIeD4+ZXikPHWk1ODWPUPbU3tJvUmzGBQ8UqT+BipiyQdF8jGS/oOMcqPUz30RO7UIevUpo31ektNPHtM/tFoqIXGX+udnjk1KryjLvJs3h1zBjB2YHhQzKX7huWubeEh66TZRCk69GJ81YVDGEkam9Fh5Gbd9fFJaemrVbdCCs8alpY1JGfImWfhRMmZg8jpDAj2Eln99VsvFkBG/9+im847K8hm5G92/Gx86LHPgyvUC8BuzJ3Dfp6cCtAxVAvG7/MP2W3vKtn86ioJHitTid+pVU2U73niTaBxPDR6JH03Uas1E9cN1M8ckBZDEODsj+tamrRNW8silPnWW780xun/0Rn1pXeJknHoBAXBIn/h+TC2xlpVlLmFkq/SprUy/4Ml2choYcud0727hbSoQ7yYenqfkXKVW3/7HRRPjy7Vzf49PnDSSQVm6ssZCSuphLp86guNHxkuGie317VbJ7IlD889kK1TyKEFpJY+IwSLKgZ7oVpl6INfVxHtvDO+TfrLPJlh3ffnUA2M+JYJH2HAJYSWPXILHDeccwfA+tXy0CEOTHAxqfbVNtl2xuzH5PomqWHna8Zdo2xo/pI4rI9w0tmln7ienl//1zIzzfv3Zk3I+jlOPu0RHkvYc1HLlzWdx2QnZq7+qY/H//ZPXT8t5uz1rKhjcs5qvzz4yr/zlqhRKHupt1YpESSPsAD7/2PQrjCidlyYM6ckPLj2WUw9PbqsYO7AHd8ytZ2rEu6WDI3n2CVwJJq6k9jam35QVeuNfDsHjkD61PPOl0yLlT6LLdjyl7qawzgsnj+nPdy6OX8HPPXEEdz67Ou/PTZWtqnZor5qch8ZJvZu+rqaCUf278aUzD8+wRnTZLgYPG9CdhvU7uP2Ken723FuM7p+tKi59u39dMKM9spgTBY8SlPqjSQxDHvTUF05h5fvbW4qs+fjw0UNC02ccEb2bX6YrtPKyxFDq8Z471RUHvtOW0LvG1ZJRKqJ0pe4eUv1kGaY7wgv/cgY9aytyDkR9U6q+ysuMp79wavtnjPDg+Nh1J9PsHFWxcr5y9hHpCxRJ2LhkG3fso0dVLO/ekvlQtVWK1HsuKsrTG8xH9+/OrCPDuwGW4mMjEl119/jB94LdhDeFBI/mZlcS/cglWoeEbq101ujoY/NAP43cvsWQNvRUhHiVUVRhbUkV5fGh9EtNas+tmopyNmzfy8AOGIIkGwWPFIleGInhLaK2eZSiRHXWHl9tVR34gWQqeYRVZ0lhfduPWByUbdTi1KvncYN6ZA0QmRrTCy3XkkdbBtnsVlnOCzeeEXm9ziT1NpxuVTE27tjbIeNXZdP5z4ztLNFYnWh8ziV4XH3KaL5xXsc0lLVF4juEVVtlKnms35778N3SPqI+F+W4EcndtnuF3UUeOPEUuuQRPK4gejfuXEq735g9gUuOP/BkhqhDn7foRAXr1O/YozoWL3m008Om2kptHikSdcyJboOJaqtsh+j8s8ax/N3cR91tL3+ZP50de/Zz5nefybpcosH83y88mu88uTKpV1bYnapNzY7124rfIHcwW7l+B7O++0zakOvB4TtODLnJLkrp4onP596bKBe9aip5r/HARUeVby/MdJ5OrTq65tTDWv2My6eOAOAXz78DtD0gdqLYkVYdWRUrY/OufQwqcvBQySNFouTc6EcrTC15tPbj7MhnZQ/tVdPKzVlxMV/5fMaEQTx23clJgy+G3eexeVejSh5FduSQni33cwQdl6WTRlg9flDqoTkmws2guQh+/g8vndTSfpBrbdSw3tHbPE7OMPRJV/KDS49Ner+vqRnn2jb2XXtS8EiROM73ZwoeGWJDsToo5RKrMo2qu29/c2hvje8/tbLkSx6HDejOBZMKfzNWsdx39VRuv6K+5Q5mgAE9qjI2Dl8+5VCOGFSXdjwEL3baXMXj1WYYpich+BsIdjRpLagltKWPxn+EtBMF9cow5HmihuGmEq5uThjcMzmo7vEDMGYax6yjqNoqxYGSR3yispWid6oS7GwVOrYVZB9cbf32ve06DH17e/L6U4qdhQ6X2iaSiAVDe9W0tLk1Z3k6V5TY0a2yPO1hTY/808lZ18lYPZXjj6ctIzy3Nsz5b679EEvf+YB/yvBApW4ZnppZyhLPCCl28FDJI0XiKqnRj2bansORFEIu1WRho+pC+g2Cd8w9UJ/+/rY9DCjywSnJJ9RcTv7ZjocoJY+wE1Pi+TJRu3HnOs5TIXqHH9Knlo8ck34vVWdq80i1w9cWFPuBZ6V9ZiyCxG818Tf1Po9MDvXjRn3m1NGFyFZeUu9gT0gEj7OPio9TFRwQcf32vQzoUdwGOUmWb7VTtrVv+/jkpPfZrmrDhomHzCWMQ/rUJlW/HchPco7a0lW3rcYNig8uObRXtCGAii04lpyCR4k568j4iXSSf1ZHRSy1wTxcj+oKVt9yDueGXOUU23khw6jAgeDxuZljWXHTrKTRRDds36uSR4lJPfYS9flhw+TktIGA08YlNzxnCx6NGavGMp/8y0NKv6ltIR0ZPD49bRQPffakVkeJKHajdCaJp24Wk4JHihNG9WX1Lecwyo9rkxjOPN8n7pWiRJtHn26VVMXKk3phrd++J3QgRelYwaMutUqqR3UFr359FteffmAE5dRTdHCVbCWX8pR5/bNc1TY2hZc8smv995OhQFMQZWXGMTlUpz31hVOZN21UB+QommK3d0ABg4eZ/buZvWZmL5rZg2bWy6ePMLPdZrbMv24LrDPZzF4yswYz+775X4uZ9TGzJ8xspf9b8CcQtXTVTXueRyk2ibfNJt9Nt1dID57GJqeSR4kJO/RqKpODfjY9sjygKDWwpJ6cEqPzQluDR+uiljza8uC1qLpXxZK+e6nIFtw7SiFLHk8ARzrnjgZeBxYE5r3hnJvoX1cH0m8F/gEY41+Jh2PPB55yzo0BnvLvCyrxA6ks73y9MXK1Zdc+etVWZHzGuR4xW1pyafPItki2cZtS10sNHsERYzNVW2U79+cSF6IEj0ULZvC7z2Xv/dWVFbu9AwoYPJxzv3fOJW4iWARkHXvBzAYDdc65RS5eR3Q3cJ6fPRu4y0/fFUgvmH37k+8w74o27dxHn7AhLTw1mJeWtoxllOvRm1qiHpUyHHnwfqdMJY+PTMzc3nd4yCObU0WpihnUs5oe1bkPiPjFM8a2uQRRijXWXbraKsUngccC70ea2VIz+5OZJS4fhgJrAsus8WkAA51z6/z0e0DoeOVmNs/MFpvZ4g0bNuSV4QPVVtHu8+hMtuzcl/Tcj4RE42apNhYeTIInrlzGvmqPatVFC2Zw3IjMDcn7M5Q8sj1kqUd1RcYb9ob1rmHRghkM6124nk/XTh/D4v93esG231H2+fNSKZQ88mquN7MngUEhs25wzj3kl7kB2A/c4+etA4Y75zaZ2WTg12Y2IdfPdM45Mws9ep1zC4GFAPX19Xmd71uCR1luva06o80796UNgRG8OUwlj9Jxwsg+bQoMbYkl2R7RCplLHocN6ME5Rw/mkRfXhfeu8r/IZ/75NLpXx9i2O34DaplZq58pcYl2ylIoeeQVPJxzM7PNN7MrgQ8DM3xVFM65vcBeP73EzN4AxgJrSa7aGubTAN43s8HOuXW+emt9PvnOReJAT/wGSrHomq/NO/dlvIGrR1WMmpThKEb10/PKO7tvzJ7AVx9azvjBdW3exr4sDebfmH0kw/vUht5blOixWFcTo1dtZUvw6EJ9UApul7+wK4VG/EL2tpoFfAn4iHNuVyC9v5mV++lRxBvGV/lqqW1mNsX3sroCeMiv9jAw10/PDaRLGzniDea9Q6qtAPqnVFm9/K9n8uh1B28DZbHkOi5UJqlVQdP9EyrrR7S9w2K23lZ9ulXy5VnjQkseCcV6rkhX0ulLHq34AVAFPOGL24t8z6ppwNfNrBFoBq52zm3261wD3AnUEG8jSbST3ALcZ2ZXAW8BHytgvpN0wQIHADv2NNLY5NIe/ZkwMKXKKttzqqXw2nJ1/uMr65k2Jvnmv6G9avj956e1DDXSFpnaPFqT79hXckCXDh7OudDB+Z1zDwAPZJi3GEgb5tI5twnouKfLk+XH2kUumhJ3l/fO0NtK3XRLQ53vUdSWxuTp40L7lSQNQ9MW2aqtcuJ/Q6quartO32B+UOliV0eJ4NEnQ92pbhAsDUcO7cmPLp+cVoIopraWPLrab6iYWhtNuCNoeJKIusrFUmJY50z3eainVek4c8KgtM4LxZRvDLAu3AmlWG4PPGGyo6jkkaNuVeX0rKngxnPHFzsr7SrsPg84UG1lph95R3ruKzNaeiF1NZkOI1Vf5S/T77iQFDxyFCsv44Ubzyh2NjJq68GTMXj4ksez86ezcXvmh0ZJ+xpYV83AEh+QMt9BQjtbrOgM107FCMAKHl3AT648LqfhH1JVxcoyPlo0UfIY3LMm7TGYcnD585dPS3rf1pNpVxyZulTk+6yXtlDw6AJOGxf+sKfW9OlWmfGuZTWYS0LaMdLGGDC0dw2vv78j6z0gxfD8V2awd38HjgdfAMX4lyp4tKIrXyxlqrKqrSzXfR3S7n521Qk8v3oztZWldWx1hefWFOPGS/W2yuBgaMTL3N5R1aWeWyK5qwt55kfqkdDWu94H1FXz4aMPjLzbha/LOpzaPKRDtdZYLgeX52+YkdP9A125NN5ZBYPHnZ84rkM+U8HjIKa7yyWooy8aVLZtP8EG87BBKQtBweMgFjauVV1NRV7jHknXk9ZerpJHySkz44jBddRUdFxLhILHQSxsRN1fXXMivWqKP9yz5Oe0wws3nEm+I/0WwoWTh3H/kjWtL9hFmcFjHTzqtYLHQSyszUP3dHR+r31jFrEC9t0sxZLHty86hm9fdExBtl2K3zeVuupKhyrGkAZSeO09aF6huoF2gnNyp1GM3pEKHq0oxSJ6ru6YW581QCh4SFu09y9CDef50x3mJaQrPO1sxhHhz3NIUPCQXKjBvPQV42yl4HEQ61VTUewsSCf2yZNGMrS32shKgW4SlA7Tq7aCWLkGGJC2iBc9pozqwxkTBhU5L1IsOnscpDI9BEokVdrwJL7aSkPYdJwLJg3NOl9jW0mHUXuHtFW1H8Y/Vp7fCWtIr2qG9a7hxnMntEe2urT//NhEVt9yTlp6r9p41XMx4njBgoeZfc3M1prZMv86OzBvgZk1mNkKMzszkD7LpzWY2fxA+kgze86n/9LMdObLw/kTh3Dh5GHFzoZ0FiknpptmH8k/zRjDKXk+V70qVs6fvzy9zY8UEOhWxBGKC/3J33HOfTuYYGbjgTnABGAI8KSZjfWzfwicDqwB/mZmDzvnXgG+6bd1r5ndBlwF3FrgvHdZV540sthZkE6sd7dKrj99bOsLSsElHrDVpUoeWcwG7nXO7XXOvQk0AMf7V4NzbpVzbh9wLzDb4hWr04H7/fp3Aed1VGbVLVHk4FbK93olclaM9qdCB49rzexFM/uxmfX2aUOBdwLLrPFpmdL7Ah845/anpBeU2gJF4rrCPU9dVUvnhSJ8dl7Bw8yeNLOXQ16ziVcrjQYmAuuA/2iH/LaWn3lmttjMFm/YsKHQHyciUhI63X0ezrmZuSxnZrcDv/Vv1wKHBGYP82lkSN8E9DKzmC99BJdPzc9CYCFAfX196ZY1RTqRnrqZNMlPrjyOVRt3FjsbQHGr1ArZ22pw4O35wMt++mFgjplVmdlIYAzwPPA3YIzvWVVJvFH9YRdvEfoDcKFffy7wUKHyLSLJKmPq0R902rgBXPWh0uh0cqDaqmuNbfUtM5tIvE1nNfBpAOfccjO7D3gF2A981jnXBGBm1wKPA+XAj51zy/22vgzca2Y3AUuBOwqYbxGRTuFAg3nHf3bBgodz7vIs824Gbg5JfxR4NCR9FfHeWCIi4nXaBnMRESmm4kUPBY9WqNVdREpVMds8FDxERLLoDDcKHyx3mIuIdEpfn11agzi2NJgX4bMVPEREcvCZU0dzxdQRxc5GkgNjW6naSkREclTMGjUFDxGRTkpddUVEpM3UYC4iIjlrafNQV93SMXZgDwD66nGtIlKiWto8utLwJJ3dl2eN44zxAzlyaM9iZ0VEJFyizUPVVqWjMlbGCaP6FjsbIiIZ6T4PEZESV4rPUxzcsxqAsiIUPVRtJSLSSd3zqRN4fvVmulV1/KlcJQ8RkU5qQF01Hz56SFE+W8FDREQiU/AQkVCJ+nSRMGrzEJFQv7tuGlt3NxY7G1KiFDxEJFTP2gp61lYUOxtSolRtJSIikRUseJjZL81smX+tNrNlPn2Eme0OzLstsM5kM3vJzBrM7PvmB6k3sz5m9oSZrfR/excq3yIi0rqCBQ/n3MXOuYnOuYnAA8CvArPfSMxzzl0dSL8V+AdgjH/N8unzgaecc2OAp/x7EZGCc53hObRFUPBqK196+Bjwi1aWGwzUOecWufjeuhs4z8+eDdzlp+8KpIuIdIhijB9VyjqizeNk4H3n3MpA2kgzW2pmfzKzk33aUGBNYJk1Pg1goHNunZ9+DxhY0ByLiEhWefW2MrMngUEhs25wzj3kpy8hudSxDhjunNtkZpMS90haAAAPTklEQVSBX5tZzk+Vd845MwstR5rZPGAewPDhw3PdpIiIRJRX8HDOzcw238xiwAXA5MA6e4G9fnqJmb0BjAXWAsMCqw/zaQDvm9lg59w6X721PkN+FgILAerr61VRKSJSIIWutpoJvOaca6mOMrP+Zlbup0cRbxhf5aultpnZFN9OcgWQKL08DMz103MD6SIiUgSFvklwDukN5dOAr5tZI9AMXO2c2+znXQPcCdQAj/kXwC3AfWZ2FfAW8QZ4EREpkoIGD+fclSFpDxDvuhu2/GLgyJD0TcCM9s6fiIi0jYYnERHpJH7/+WnUVJQXOxuAgoeISFaldI/g2IE9ip2FFhrbSkQkB1aSD6ItHgUPERGJTMFDREQiU/AQEZHIFDxERHLgKKGW8xKg4CEikoVG0w2n4CEiIpEpeIiISGQKHiIiWZTSTYKlRMFDRCQHukkwmYKHiIhEpuAhIiKRKXiIiEhkCh4iIhKZgoeIiESm4CEiIpEpeIiISGQKHiIiElnewcPMLjKz5WbWbGb1KfMWmFmDma0wszMD6bN8WoOZzQ+kjzSz53z6L82s0qdX+fcNfv6IfPMtIpIL3WAerj1KHi8DFwDPBBPNbDwwB5gAzAL+28zKzawc+CFwFjAeuMQvC/BN4DvOucOALcBVPv0qYItP/45fTkSkw2h03WR5Bw/n3KvOuRUhs2YD9zrn9jrn3gQagOP9q8E5t8o5tw+4F5htZgZMB+73698FnBfY1l1++n5ghl9eRESKoJBtHkOBdwLv1/i0TOl9gQ+cc/tT0pO25edv9cuLiEgRxHJZyMyeBAaFzLrBOfdQ+2ap7cxsHjAPYPjw4UXOjYhI15VT8HDOzWzDttcChwTeD/NpZEjfBPQys5gvXQSXT2xrjZnFgJ5++dR8LgQWAtTX16udS0SkQApZbfUwMMf3lBoJjAGeB/4GjPE9qyqJN6o/7JxzwB+AC/36c4GHAtua66cvBJ72y4uISBG0R1fd881sDTAVeMTMHgdwzi0H7gNeAX4HfNY51+RLFdcCjwOvAvf5ZQG+DFxvZg3E2zTu8Ol3AH19+vVAS/deERHpeDlVW2XjnHsQeDDDvJuBm0PSHwUeDUlfRbw3Vmr6HuCifPMqIiLtQ3eYi4hkoQrycAoeIiI50I1lyRQ8REQkMgUPERGJTMFDREQiU/AQEZHIFDxERCQyBQ8REYlMwUNERCJT8BARkcgUPEREsnB6EG0oBQ8RkVzo4aVJFDxERCQyBQ8REYlMwUNERCJT8BARkcgUPEREJDIFDxERiUzBQ0REIlPwEBHJQo+hDZdX8DCzi8xsuZk1m1l9IP10M1tiZi/5v9MD8/5oZivMbJl/DfDpVWb2SzNrMLPnzGxEYJ0FPn2FmZ2ZT55FRNpCtwgmi+W5/svABcCPUtI3Auc65941syOBx4GhgfmXOecWp6xzFbDFOXeYmc0BvglcbGbjgTnABGAI8KSZjXXONeWZdxERaaO8Sh7OuVedcytC0pc65971b5cDNWZW1crmZgN3+en7gRlmZj79XufcXufcm0ADcHw++RYRkfx0RJvHR4G/O+f2BtJ+4qusvuoDBMRLJu8AOOf2A1uBvsF0bw3JpRgREelgrVZbmdmTwKCQWTc45x5qZd0JxKufzggkX+acW2tmPYAHgMuBu3PPctbPmwfMAxg+fHh7bFJEREK0GjycczPbsmEzGwY8CFzhnHsjsL21/u92M/s58Sqou4G1wCHAGjOLAT2BTYH0hGE+LSyvC4GFAPX19eojISJSIAWptjKzXsAjwHzn3F8C6TEz6+enK4APE290B3gYmOunLwSeds45nz7H98YaCYwBni9EvkVEJDf5dtU938zWAFOBR8zscT/rWuAw4F9SuuRWAY+b2YvAMuIliNv9OncAfc2sAbgemA/gnFsO3Ae8AvwO+Kx6WomIFFdeXXWdcw8Sr5pKTb8JuCnDapMzbGsPcFGGeTcDN7cxmyIibab673C6w1xEJAd6kGAyBQ8REYlMwUNERCJT8BARkcgUPEREJDIFDxERiUzBQ0REIlPwEBGRyBQ8REQkMgUPEZFs9BzaUAoeIiI5MD2INomCh4iIRKbgISIikSl4iIhIZAoeIiISmYKHiIhEpuAhIiKRKXiIiEhkCh4iIlnoFsFwCh4iIjnQY2iTKXiIiEhkeQUPM7vIzJabWbOZ1QfSR5jZbjNb5l+3BeZNNrOXzKzBzL5vFo/nZtbHzJ4ws5X+b2+fbn65BjN70cwm5ZNnERHJX74lj5eBC4BnQua94Zyb6F9XB9JvBf4BGONfs3z6fOAp59wY4Cn/HuCswLLz/PoiIlJEeQUP59yrzrkVuS5vZoOBOufcIuecA+4GzvOzZwN3+em7UtLvdnGLgF5+OyIiUiSFbPMYaWZLzexPZnayTxsKrAkss8anAQx0zq3z0+8BAwPrvJNhnSRmNs/MFpvZ4g0bNrTLlxARkXSx1hYwsyeBQSGzbnDOPZRhtXXAcOfcJjObDPzazCbkminnnDOzyD3knHMLgYUA9fX16mEnIlIgrQYP59zMqBt1zu0F9vrpJWb2BjAWWAsMCyw6zKcBvG9mg51z63y11HqfvhY4JMM6IiJSBAWptjKz/mZW7qdHEW/sXuWrpbaZ2RTfy+oKIFF6eRiY66fnpqRf4XtdTQG2Bqq3RESkCPLtqnu+ma0BpgKPmNnjftY04EUzWwbcD1ztnNvs510D/A/QALwBPObTbwFON7OVwEz/HuBRYJVf/na/vohIh9BTaMO1Wm2VjXPuQeDBkPQHgAcyrLMYODIkfRMwIyTdAZ/NJ58iIvnSDebJdIe5iIhEpuAhIiKRKXiIiEhkCh4iIhKZgoeIiESm4CEiIpEpeIiISGQKHiIiWTg9iDaUgoeISA70GNpkCh4iIhKZgoeIiESm4CEiIpEpeIiISGQKHiIiEpmCh4iIRKbgISIikSl4iIhkUVEeP03GynW6DMrrSYIiIl3dp6eNZve+Jq48cUSxs1JSFDxERLKoqSxnwdlHFDsbJUflMBERiSyv4GFmF5nZcjNrNrP6QPplZrYs8Go2s4l+3h/NbEVg3gCfXmVmvzSzBjN7zsxGBLa3wKevMLMz88mziIjkL99qq5eBC4AfBROdc/cA9wCY2VHAr51zywKLXOacW5yyrauALc65w8xsDvBN4GIzGw/MASYAQ4AnzWysc64pz7yLiEgb5VXycM696pxb0cpilwD35rC52cBdfvp+YIaZmU+/1zm31zn3JtAAHN/WPIuISP46os3jYuAXKWk/8VVWX/UBAmAo8A6Ac24/sBXoG0z31vi0NGY2z8wWm9niDRs2tOd3EBGRgFaDh5k9aWYvh7xm57DuCcAu59zLgeTLnHNHASf71+Vtzn0K59xC51y9c66+f//+7bVZERFJ0Wqbh3NuZh7bn0NKqcM5t9b/3W5mPydeBXU3sBY4BFhjZjGgJ7ApkJ4wzKeJiEiRFKzayszKgI8RaO8ws5iZ9fPTFcCHiTe6AzwMzPXTFwJPO+ecT5/je2ONBMYAzxcq3yIi0rq8eluZ2fnAfwH9gUfMbJlzLtGVdhrwjnNuVWCVKuBxHzjKgSeB2/28O4CfmlkDsJl4qQXn3HIzuw94BdgPfDaXnlZLlizZaGZvRfxK/YCNEdfp7PSdDw4H43eGg/N75/udD81lIYtf3AuAmS12ztW3vmTXoe98cDgYvzMcnN+7o76z7jAXEZHIFDxERCQyBY9kC4udgSLQdz44HIzfGQ7O790h31ltHiIiEplKHiIiEpmCB2Bms/yIvQ1mNr/Y+YnKzA4xsz+Y2St+lOPrfHofM3vCzFb6v719upnZ9/33fdHMJgW2Ndcvv9LM5gbSJ5vZS36d7weGlSkqMys3s6Vm9lv/fqQflbnBj9Jc6dMjj9pciseFmfUys/vN7DUze9XMph4k+/nz/th+2cx+YWbVXW1fm9mPzWy9mb0cSCv4vs30Ga1yzh3UL+L3m7wBjAIqgReA8cXOV8TvMBiY5Kd7AK8D44FvAfN9+nzgm376bOAxwIApwHM+vQ+wyv/t7ad7+3nP+2XNr3tWsb+3z9f1wM+B3/r39wFz/PRtwGf89DXAbX56DvBLPz3e7/MqYKQ/FspL9bggPnjop/x0JdCrq+9n4mPZvQnUBPbxlV1tXxO/N24S8HIgreD7NtNntJrfYh8YxX4BU4HHA+8XAAuKna88v9NDwOnACmCwTxsMrPDTPwIuCSy/ws+/BPhRIP1HPm0w8FogPWm5In7PYcBTwHTgt/5HsRGIpe5b4HFgqp+O+eUsdX8nlivF44L4kD1v4tsqU/dfF97PicFR+/h991vgzK64r4ERJAePgu/bTJ/R2kvVVhFG7e0MfBH9WOA5YKBzbp2f9R4w0E9n+s7Z0teEpBfbd4EvAc3+fV/gAxcflRmS8xl11OZSPC5GAhuIj0q91Mz+x8y60cX3s4uPh/dt4G1gHfF9t4Suva8TOmLfZvqMrBQ8uhAz6w48AHzOObctOM/FLyu6TNc6M/swsN45t6TYeelAMeLVGrc6544FdhKvZmjR1fYzgK+Dn008eA4BugGzipqpIuiIfRvlMxQ8usiovRYfL+wB4B7n3K988vtmNtjPHwys9+mZvnO29GEh6cV0EvARM1tNfPDN6cD3gF4WH5UZkvPZ8t0st1GbS/G4WAOscc4959/fTzyYdOX9DDATeNM5t8E51wj8ivj+78r7OqEj9m2mz8hKwQP+BozxPTcqiTewPVzkPEXie03cAbzqnPvPwKzgSMVzibeFJNKv8D02pgBbfbH1ceAMM+vtr/bOIF4XvA7YZmZT/GddEdhWUTjnFjjnhjnnRhDfZ0875y4D/kB8VGZI/85RRm0uuePCOfce8I6ZHe6TZhAfMLTL7mfvbWCKmdX6fCW+d5fd1wEdsW8zfUZ2xWoEK6UX8Z4LrxPvcXFDsfPThvx/iHhR80VgmX+dTbye9ylgJfERjPv45Q34of++LwH1gW19kvijfhuATwTS64kPn/8G8ANSGm2L/P1P5UBvq1HETwgNwP8CVT692r9v8PNHBda/wX+vFQR6F5XicQFMBBb7ff1r4j1quvx+Bv4VeM3n7afEe0x1qX1N/NlH64BG4qXMqzpi32b6jNZeusNcREQiU7WViIhEpuAhIiKRKXiIiEhkCh4iIhKZgoeIiESm4CEiIpEpeIiISGQKHiIiEtn/B6m/oe1+5fo+AAAAAElFTkSuQmCC"
},
"execution_count": 73,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df2['CFM_ETC'].plot()"
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 101,
"metadata": {
},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEJhJREFUeJzt3X+M5HV9x/Hnu3eK9NZyIji9ArpHSq0IEXMTpLEmu/ijp00DRNrAH3hEm9WmNiY9k161TTHWRk2RptLEnoHcNaGuVqFHBGuQsBCbFruLZ/fOC+WHmLI974LA6VKkOXn3j/1uOj13b2a+M7Nz+5nnI5ns9/v5fj/z/bwz333td7/zne9EZiJJWv9+btgDkCT1h4EuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKsTGtdzYWWedlePj47X6Pvfcc2zatKm/AzrFWfNosObR0EvNc3NzT2Xm2e3WW9NAHx8fZ3Z2tlbfmZkZJiYm+jugU5w1jwZrHg291BwR3+9kPU+5SFIhDHRJKoSBLkmFMNAlqRAGuiQVom2gR8TLIuJbEfGdiDgYER+r2rdGxIMR8WhEfDEiXjr44UqSVtPJEfoLwOWZ+QbgEmB7RFwGfAq4KTN/GXgGeN/ghilJaqdtoOeSxWr2JdUjgcuBL1fte4ErBzJCSVJHOjqHHhEbImI/cBS4B3gMeDYzj1erPAmcM5ghSpI6Ed18SXREbAbuAP4U2FOdbiEizgO+lpkXrdBnCpgCaDQa26anp2sNdHFxkbGxsVp91ytrHg3WvHbmF46t+TaXbT1jQ+2aJycn5zKz2W69rj76n5nPRsR9wK8BmyNiY3WUfi6wsEqf3cBugGazmXU/+upHhUeDNY+GYdV8/a671nyby/Zs3zTwmju5yuXs6siciDgdeDtwCLgPuLpabQewb1CDlCS118kR+hZgb0RsYOkPwJcy86sR8V1gOiL+HPg2cMsAxylJaqNtoGfmvwNvXKH9ceDSQQxKktQ9PykqSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEG0DPSLOi4j7IuK7EXEwIj5Utd8QEQsRsb96vGvww5UkrWZjB+scB3Zm5kMR8XJgLiLuqZbdlJl/ObjhSZI61TbQM/MwcLia/nFEHALOGfTAJEndiczsfOWIceAB4CLgD4HrgR8BsywdxT+zQp8pYAqg0Whsm56erjXQxcVFxsbGavVdr6x5NFjz2plfOLbm21y29YwNtWuenJycy8xmu/U6DvSIGAPuBz6RmbdHRAN4Ckjg48CWzHzvyZ6j2Wzm7OxsR9s70czMDBMTE7X6rlfWPBqsee2M77przbe5bM/2TbVrjoiOAr2jq1wi4iXAV4DbMvN2gMw8kpk/zcwXgc8Dl9YaqSSpLzq5yiWAW4BDmfmZlvYtLatdBRzo//AkSZ3q5CqXNwPXAfMRsb9q+whwbURcwtIplyeA9w9khJKkjnRylcs3gVhh0d39H44kqS4/KSpJhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhWgb6BFxXkTcFxHfjYiDEfGhqv3MiLgnIh6pfr5i8MOVJK2mkyP048DOzLwQuAz4/Yi4ENgF3JuZFwD3VvOSpCFpG+iZeTgzH6qmfwwcAs4BrgD2VqvtBa4c1CAlSe11dQ49IsaBNwIPAo3MPFwt+gHQ6OvIJEldiczsbMWIMeB+4BOZeXtEPJuZm1uWP5OZP3MePSKmgCmARqOxbXp6utZAFxcXGRsbq9V3vbLm0TCKNR99+hhHnh/2KNbW1jM21H6dJycn5zKz2W69jZ08WUS8BPgKcFtm3l41H4mILZl5OCK2AEdX6puZu4HdAM1mMycmJjrZ5M+YmZmhbt/1yppHwyjW/Nnb9nHjfEfxU4w92zcN/HXu5CqXAG4BDmXmZ1oW3QnsqKZ3APv6PzxJUqc6+RP5ZuA6YD4i9ldtHwE+CXwpIt4HfB/4ncEMUZLUibaBnpnfBGKVxW/t73AkSXX5SVFJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKMVrfAaWOjO+6a2jb3nnxca4fwvaf+ORvrvk2pX7zCF2SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwssWJYZ7qeae7ZuGtm2VxSN0SSqEgS5JhTDQJakQbQM9Im6NiKMRcaCl7YaIWIiI/dXjXYMdpiSpnU6O0PcA21dovykzL6ked/d3WJKkbrUN9Mx8AHh6DcYiSepBZGb7lSLGga9m5kXV/A3A9cCPgFlgZ2Y+s0rfKWAKoNFobJuenq410MXFRcbGxmr1Xa+GVfP8wrE13+ayxulw5PmhbX4otp6xYeT27aNPH/N17sLk5ORcZjbbrVc30BvAU0ACHwe2ZOZ72z1Ps9nM2dnZtttbyczMDBMTE7X6rlfDqnnYt8+9cX60Ph6xZ/umkdu3P3vbPl/nLkRER4Fe6yqXzDySmT/NzBeBzwOX1nkeSVL/1Ar0iNjSMnsVcGC1dSVJa6Pt/zwR8QVgAjgrIp4E/gyYiIhLWDrl8gTw/gGOUZLUgbaBnpnXrtB8ywDGIknqgZ8UlaRCjNbbzNIpaH7h2FC+GHuYdl487BGUySN0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgvW+zAsG5W5ZcHS+qGR+iSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEK0DfSIuDUijkbEgZa2MyPinoh4pPr5isEOU5LUTidH6HuA7Se07QLuzcwLgHureUnSELUN9Mx8AHj6hOYrgL3V9F7gyj6PS5LUpbrn0BuZebia/gHQ6NN4JEk1RWa2XyliHPhqZl5UzT+bmZtblj+TmSueR4+IKWAKoNFobJuenq410MXFRcbGxmr17dX8wrGhbHfrGRuGUvOw6gVonA5Hnh/a5ofCmkdDL7/Pk5OTc5nZbLfexlrPDkciYktmHo6ILcDR1VbMzN3AboBms5kTExO1NjgzM0Pdvr26ftddQ9nunu2bhlLzsOoF2HnxcW6cr7tbrk/WPBrW4ve57imXO4Ed1fQOYF9/hiNJqquTyxa/APwL8NqIeDIi3gd8Enh7RDwCvK2alyQNUdv/eTLz2lUWvbXPY5Ek9cBPikpSIQx0SSrEaL3NvM7MLxwb6hUnktYXj9AlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIdbNZYtewidJJ+cRuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpED19wUVEPAH8GPgpcDwzm/0YlCSpe/34xqLJzHyqD88jSeqBp1wkqRCRmfU7R3wPeAZI4G8zc/cK60wBUwCNRmPb9PR0rW0dffoYR56vPdR1qXE61jwCrHk0bD1jA2NjY7X6Tk5OznVySrvXQD8nMxci4lXAPcAfZOYDq63fbDZzdna21rY+e9s+bpxfN99p3Rc7Lz5uzSPAmkfDnu2bmJiYqNU3IjoK9J5OuWTmQvXzKHAHcGkvzydJqq92oEfEpoh4+fI08A7gQL8GJknqTi//8zSAOyJi+Xn+PjP/qS+jkiR1rXagZ+bjwBv6OBZJUg+8bFGSCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCtFToEfE9oh4OCIejYhd/RqUJKl7tQM9IjYAfwO8E7gQuDYiLuzXwCRJ3enlCP1S4NHMfDwz/weYBq7oz7AkSd3qJdDPAf6zZf7Jqk2SNASRmfU6RlwNbM/M363mrwPelJkfPGG9KWCqmn0t8HDNsZ4FPFWz73plzaPBmkdDLzW/JjPPbrfSxppPDrAAnNcyf27V9v9k5m5gdw/bASAiZjOz2evzrCfWPBqseTSsRc29nHL5N+CCiNgaES8FrgHu7M+wJEndqn2EnpnHI+KDwNeBDcCtmXmwbyOTJHWll1MuZObdwN19Gks7PZ+2WYeseTRY82gYeM213xSVJJ1a/Oi/JBXilAj0iPjtiDgYES9GRLOlfTwino+I/dXjcy3LtkXEfHXbgb+OiKjaz4yIeyLikernK4ZRUzur1dyy/NURsRgRH25pW/FWC9Ub0w9W7V+s3qQ+5Zzkdb605TX+TkRc1bKs1JrfHhFz1T48FxGXtywrct+OiFdGxH3Vfn3zCX2KrLla9sdVXQ9HxG+0tPd/387MoT+A17F0jfoM0GxpHwcOrNLnW8BlQABfA95ZtX8a2FVN7wI+Nez6uqm5ZfmXgX8APlzNbwAeA84HXgp8B7iwWvYl4Jpq+nPA7w27vi5f558HNlbTW4CjLL2/U3LNbwR+qZq+CFhoWVbkvg1sAn4d+ABw8wl9Sq35wmq/PQ3YWu3PGwa1b58SR+iZeSgzO/7AUURsAX4hM/81l6r+O+DKavEVwN5qem9L+ynlZDVHxJXA94DWq4ZWvNVCdSRzOUt/AGAd1pyZ/52Zx6vZlwHLb+yUXPO3M/O/qtmDwOkRcVrJ+3ZmPpeZ3wR+0tpecs0sjX86M1/IzO8Bj7K0Xw9k3z4lAr2NrRHx7Yi4PyLeUrWdw9KtBpa13nagkZmHq+kfAI01GmdfRMQY8EfAx05YtNqtFl4JPNsSiOvyFgwR8aaIOAjMAx+o6im65hbvBh7KzBcoeN8+iZJrXm0fHsi+3dNli92IiG8Av7jCoo9m5r5Vuh0GXp2ZP4yIbcA/RsTrO91mZmZEDO0ynpo13wDclJmL1WnEdaVmzWTmg8DrI+J1wN6I+NqgxthvdWuu+r4e+BTwjm62uU737Z6MYs3dWrNAz8y31ejzAvBCNT0XEY8Bv8LSLQbObVm19bYDRyJiS2Yerv6VO9rbyOurUzPwJuDqiPg0sBl4MSJ+Asyx8q0WfghsjoiN1V/1FW/BsFZq1tza/1BELFKdV6bgmiPiXOAO4D2Z+VjVXPK+vZqSaz7ZLVL6vm+f0qdcIuLsWLrvOhFxPnAB8Hj1L9iPIuKy6pzTe4Dlv5B3Ajuq6R0t7etCZr4lM8czcxz4K+AvMvNmVrnVQnXO8T7g6uop1l3NVU0bq+nXAL8KPEHZNW8G7mLpDb9/Xm4ved9eTeE13wlcU70/spWlDPsWg9q31+pd4JM9gKtYOlf0AnAE+HrV/m6W3jDaDzwE/FZLnyZwgKV3im/m/z4k9UrgXuAR4BvAmcOur5uaT1jnBqqrXKr5dwH/UdX80Zb286ud5FGWrow5bdj1dfk6X3fC63zlCNT8J8BzVc3Lj1eVvm+z9If6aWCxWmf5yo6Sa/5oVdfDVFfvDGrf9pOiklSIU/qUiySpcwa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmF+F8FQv0BtK6yQgAAAABJRU5ErkJggg=="
},
"execution_count": 101,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df2['CFM_ETC'].hist(bins = 10, range = (-1500, -1000))"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ETC_Volume | \n",
" CFM_CO2 | \n",
" percent_Inside | \n",
" percent_Outside | \n",
" CFM_ETC | \n",
" ACH | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 13010.0 | \n",
" 13010.000000 | \n",
" 13010.000000 | \n",
" 1.301000e+04 | \n",
" 13010.000000 | \n",
" 13010.000000 | \n",
"
\n",
" \n",
" mean | \n",
" 40000.0 | \n",
" -10.777121 | \n",
" 0.095751 | \n",
" 4.000000e-02 | \n",
" -230.943259 | \n",
" -0.346415 | \n",
"
\n",
" \n",
" std | \n",
" 0.0 | \n",
" 18.090360 | \n",
" 0.031318 | \n",
" 8.195149e-15 | \n",
" 394.273245 | \n",
" 0.591410 | \n",
"
\n",
" \n",
" min | \n",
" 40000.0 | \n",
" -498.400000 | \n",
" 0.060100 | \n",
" 4.000000e-02 | \n",
" -16950.495050 | \n",
" -25.425743 | \n",
"
\n",
" \n",
" 25% | \n",
" 40000.0 | \n",
" -12.000000 | \n",
" 0.069325 | \n",
" 4.000000e-02 | \n",
" -261.949742 | \n",
" -0.392925 | \n",
"
\n",
" \n",
" 50% | \n",
" 40000.0 | \n",
" -6.400000 | \n",
" 0.089700 | \n",
" 4.000000e-02 | \n",
" -136.850291 | \n",
" -0.205275 | \n",
"
\n",
" \n",
" 75% | \n",
" 40000.0 | \n",
" -3.200000 | \n",
" 0.111000 | \n",
" 4.000000e-02 | \n",
" -65.573770 | \n",
" -0.098361 | \n",
"
\n",
" \n",
" max | \n",
" 40000.0 | \n",
" -0.408371 | \n",
" 0.273300 | \n",
" 4.000000e-02 | \n",
" -4.208311 | \n",
" -0.006312 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 75,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df2['ACH'] = (df2['CFM_ETC'] / df2['ETC_Volume']) * 60\n",
"df2.describe()"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"#df2['CFM_ETC'].plot.density( range = 200 )"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 77,
"metadata": {
},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD8CAYAAACcjGjIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEyNJREFUeJzt3X+snmd93/H3Z/GSttnACenOkB3NnnA7JaR02WnIhLYdcJU4DOFsAhQ0DYdGtdallHaWqFOkRYNGglItg7UwWY2XpEKENKWLtYSmXuAZmrT8hDTkB2mOEkHsJoTiJJ2JCDrw3R/nMn3IZeeY5znnPD5+3i/p6Nz3dV/XfV9f2T6fc/94bqeqkCRp2N+a9AQkSScew0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEmddZOewKjOOuus2rRp00hjv/Od73D66acv74ROcNY8Haat5mmrF8av+f777/+rqvrppfqt2XDYtGkT991330hjB4MBc3NzyzuhE5w1T4dpq3na6oXxa07y9ePp52UlSVLHcJAkdQwHSVLHcJAkdQwHSVLHcJAkdQwHSVLHcJAkdQwHSVJnzX5CWpImadPu2yZy3Ou3rc7rQjxzkCR1lgyHJHuTPJvkoaG2jyX5WpIHk/xJkvVD265KMp/ksSQXD7Vva23zSXYPtW9Ocndr/2ySU5ezQEnSj+94zhyuB7a9rG0/8Pqq+jngL4CrAJKcA1wGnNvGfDLJKUlOAX4fuAQ4B3h36wvwUeDaqnod8BxwxVgVSZLGtmQ4VNWXgEMva/uzqlpoq3cBG9vyduCmqnqpqp4E5oEL2td8VT1RVd8DbgK2JwnwFuCWNv4G4NIxa5IkjWk57jn8EvD5trwBeGpo24HWdqz21wDPDwXNkXZJ0gSN9bRSkg8CC8Cnl2c6Sx5vJ7ATYGZmhsFgMNJ+Dh8+PPLYtcqap8O01TzJenedt7B0pxWwWjWPHA5JLgfeBmytqmrNB4Gzh7ptbG0co/3bwPok69rZw3D/TlXtAfYAzM7O1qj/4YX/Qch0sOaT3yTrvXyCj7KuRs0jXVZKsg34APD2qnpxaNM+4LIkpyXZDGwB7gHuBba0J5NOZfGm9b4WKl8E3tHG7wBuHa0USdJyOZ5HWT8D/F/gZ5McSHIF8HvA3wX2J3kgyX8DqKqHgZuBR4A/Ba6squ+3s4JfBe4AHgVubn0BfhP4D0nmWbwHcd2yVihJ+rEteVmpqt59lOZj/gCvqmuAa47Sfjtw+1Han2DxaSZJ0gnCT0hLkjqGgySpYzhIkjqGgySpYzhIkjqGgySpYzhIkjqGgySpYzhIkjqGgySpYzhIkjqGgySpYzhIkjqGgySpYzhIkjqGgySpYzhIkjqGgySpYzhIkjqGgySpYzhIkjqGgySpYzhIkjqGgySps2Q4JNmb5NkkDw21nZlkf5LH2/czWnuSfCLJfJIHk5w/NGZH6/94kh1D7f8kyVfbmE8kyXIXKUn68RzPmcP1wLaXte0G7qyqLcCdbR3gEmBL+9oJfAoWwwS4GngjcAFw9ZFAaX1+eWjcy48lSVplS4ZDVX0JOPSy5u3ADW35BuDSofYba9FdwPokrwUuBvZX1aGqeg7YD2xr215VVXdVVQE3Du1LkjQho95zmKmqp9vyM8BMW94APDXU70Bre6X2A0dplyRN0Lpxd1BVlaSWYzJLSbKTxctVzMzMMBgMRtrP4cOHRx67VlnzdJi2midZ767zFiZy3NWqedRw+GaS11bV0+3S0LOt/SBw9lC/ja3tIDD3svZBa994lP5HVVV7gD0As7OzNTc3d6yur2gwGDDq2LXKmqfDtNU8yXov333bRI57/bbTV6XmUS8r7QOOPHG0A7h1qP097amlC4EX2uWnO4CLkpzRbkRfBNzRtv11kgvbU0rvGdqXJGlCljxzSPIZFn/rPyvJARafOvoIcHOSK4CvA+9q3W8H3grMAy8C7wWoqkNJPgzc2/p9qKqO3OT+9yw+EfWTwOfblyRpgpYMh6p69zE2bT1K3wKuPMZ+9gJ7j9J+H/D6peYhSVo9fkJaktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQZKxyS/EaSh5M8lOQzSX4iyeYkdyeZT/LZJKe2vqe19fm2fdPQfq5q7Y8luXi8kiRJ4xo5HJJsAH4NmK2q1wOnAJcBHwWurarXAc8BV7QhVwDPtfZrWz+SnNPGnQtsAz6Z5JRR5yVJGt+4l5XWAT+ZZB3wU8DTwFuAW9r2G4BL2/L2tk7bvjVJWvtNVfVSVT0JzAMXjDkvSdIYRg6HqjoI/C7wDRZD4QXgfuD5qlpo3Q4AG9ryBuCpNnah9X/NcPtRxkiSJmDdqAOTnMHib/2bgeeBP2LxstCKSbIT2AkwMzPDYDAYaT+HDx8eeexaZc3TYdpqnmS9u85bWLrTClitmkcOB+AXgSer6lsAST4HvAlYn2RdOzvYCBxs/Q8CZwMH2mWoVwPfHmo/YnjMj6iqPcAegNnZ2Zqbmxtp4oPBgFHHrlXWPB2mreZJ1nv57tsmctzrt52+KjWPc8/hG8CFSX6q3TvYCjwCfBF4R+uzA7i1Le9r67TtX6iqau2XtaeZNgNbgHvGmJckaUwjnzlU1d1JbgG+DCwAX2Hxt/rbgJuS/HZru64NuQ74wyTzwCEWn1Ciqh5OcjOLwbIAXFlV3x91XpKk8Y1zWYmquhq4+mXNT3CUp42q6rvAO4+xn2uAa8aZiyRp+fgJaUlSx3CQJHUMB0lSx3CQJHUMB0lSx3CQJHUMB0lSx3CQJHUMB0lSx3CQJHUMB0lSx3CQJHUMB0lSx3CQJHUMB0lSx3CQJHUMB0lSx3CQJHUMB0lSx3CQJHUMB0lSx3CQJHUMB0lSx3CQJHUMB0lSZ6xwSLI+yS1Jvpbk0ST/NMmZSfYnebx9P6P1TZJPJJlP8mCS84f2s6P1fzzJjnGLkiSNZ9wzh48Df1pV/wh4A/AosBu4s6q2AHe2dYBLgC3tayfwKYAkZwJXA28ELgCuPhIokqTJGDkckrwa+OfAdQBV9b2qeh7YDtzQut0AXNqWtwM31qK7gPVJXgtcDOyvqkNV9RywH9g26rwkSeNbN8bYzcC3gP+e5A3A/cD7gZmqerr1eQaYacsbgKeGxh9obcdq7yTZyeJZBzMzMwwGg5Emfvjw4ZHHrlXWPB2mreZJ1rvrvIWJHHe1ah4nHNYB5wPvq6q7k3ycv7mEBEBVVZIaZ4Iv298eYA/A7Oxszc3NjbSfwWDAqGPXKmueDtNW8yTrvXz3bRM57vXbTl+Vmse553AAOFBVd7f1W1gMi2+2y0W078+27QeBs4fGb2xtx2qXJE3IyOFQVc8ATyX52da0FXgE2AcceeJoB3BrW94HvKc9tXQh8EK7/HQHcFGSM9qN6ItamyRpQsa5rATwPuDTSU4FngDey2Lg3JzkCuDrwLta39uBtwLzwIutL1V1KMmHgXtbvw9V1aEx5yVJGsNY4VBVDwCzR9m09Sh9C7jyGPvZC+wdZy6SpOXjJ6QlSR3DQZLUMRwkSR3DQZLUMRwkSR3DQZLUMRwkSR3DQZLUMRwkSR3DQZLUMRwkSR3DQZLUMRwkSR3DQZLUMRwkSR3DQZLUMRwkSR3DQZLUMRwkSR3DQZLUMRwkSR3DQZLUMRwkSR3DQZLUGTsckpyS5CtJ/mdb35zk7iTzST6b5NTWflpbn2/bNw3t46rW/liSi8edkyRpPMtx5vB+4NGh9Y8C11bV64DngCta+xXAc6392taPJOcAlwHnAtuATyY5ZRnmJUka0VjhkGQj8C+BP2jrAd4C3NK63ABc2pa3t3Xa9q2t/3bgpqp6qaqeBOaBC8aZlyRpPOOeOfwX4APAD9r6a4Dnq2qhrR8ANrTlDcBTAG37C63/D9uPMkaSNAHrRh2Y5G3As1V1f5K55ZvSKx5zJ7ATYGZmhsFgMNJ+Dh8+PPLYtcqap8O01TzJenedt7B0pxWwWjWPHA7Am4C3J3kr8BPAq4CPA+uTrGtnBxuBg63/QeBs4ECSdcCrgW8PtR8xPOZHVNUeYA/A7Oxszc3NjTTxwWDAqGPXKmueDtNW8yTrvXz3bRM57vXbTl+Vmke+rFRVV1XVxqraxOIN5S9U1b8Bvgi8o3XbAdzalve1ddr2L1RVtfbL2tNMm4EtwD2jzkuSNL5xzhyO5TeBm5L8NvAV4LrWfh3wh0nmgUMsBgpV9XCSm4FHgAXgyqr6/grMS5J0nJYlHKpqAAza8hMc5Wmjqvou8M5jjL8GuGY55iJJGp+fkJYkdQwHSVLHcJAkdQwHSVLHcJAkdQwHSVLHcJAkdQwHSVLHcJAkdQwHSVLHcJAkdQwHSVLHcJAkdQwHSVLHcJAkdQwHSVLHcJAkdQwHSVLHcJAkdQwHSVLHcJAkdQwHSVLHcJAkdQwHSVLHcJAkdUYOhyRnJ/likkeSPJzk/a39zCT7kzzevp/R2pPkE0nmkzyY5Pyhfe1o/R9PsmP8siRJ4xjnzGEB2FVV5wAXAlcmOQfYDdxZVVuAO9s6wCXAlva1E/gULIYJcDXwRuAC4OojgSJJmoyRw6Gqnq6qL7fl/wc8CmwAtgM3tG43AJe25e3AjbXoLmB9ktcCFwP7q+pQVT0H7Ae2jTovSdL41i3HTpJsAv4xcDcwU1VPt03PADNteQPw1NCwA63tWO1HO85OFs86mJmZYTAYjDTfw4cPjzx2rbLm6TBtNU+y3l3nLUzkuKtV89jhkOTvAH8M/HpV/XWSH26rqkpS4x5jaH97gD0As7OzNTc3N9J+BoMBo45dq6x5OkxbzZOs9/Ldt03kuNdvO31Vah7raaUkf5vFYPh0VX2uNX+zXS6ifX+2tR8Ezh4avrG1HatdkjQh4zytFOA64NGq+s9Dm/YBR5442gHcOtT+nvbU0oXAC+3y0x3ARUnOaDeiL2ptkqQJGeey0puAfwt8NckDre23gI8ANye5Avg68K627XbgrcA88CLwXoCqOpTkw8C9rd+HqurQGPOSJI1p5HCoqv8D5Bibtx6lfwFXHmNfe4G9o85FkrS8/IS0JKljOEiSOoaDJKljOEiSOoaDJKljOEiSOoaDJKljOEiSOoaDJKljOEiSOoaDJKljOEiSOoaDJKljOEiSOoaDJKljOEiSOoaDJKljOEiSOoaDJKljOEiSOusmPQFJGtVXD77A5btvm/Q0TkqeOUiSOoaDJKljOEiSOidMOCTZluSxJPNJdk96PpI0zU6IcEhyCvD7wCXAOcC7k5wz2VlJ0vQ6UZ5WugCYr6onAJLcBGwHHpnorCQdl00TemJo13kTOexUOFHCYQPw1ND6AeCNE5qLNJZJ/aAE2HXego92almcKOFwXJLsBHa21cNJHhtxV2cBf7U8s1ozrHkK/NqU1Txt9QK8+aNj1/wPjqfTiRIOB4Gzh9Y3trYfUVV7gD3jHizJfVU1O+5+1hJrng7TVvO01QurV/MJcUMauBfYkmRzklOBy4B9E56TJE2tE+LMoaoWkvwqcAdwCrC3qh6e8LQkaWqdEOEAUFW3A7ev0uHGvjS1BlnzdJi2mqetXlilmlNVq3EcSdIacqLcc5AknUCmKhySvDPJw0l+kGT2Zduuaq/ueCzJxZOa40pK8vNJ7kryQJL7klww6TmttCTvS/K19uf+O5Oez2pJsitJJTlr0nNZaUk+1v6MH0zyJ0nWT3pOK2U1XzM0VeEAPAT8a+BLw43tVR2XAecC24BPtld6nGx+B/hPVfXzwH9s6yetJG9m8ZP2b6iqc4HfnfCUVkWSs4GLgG9Mei6rZD/w+qr6OeAvgKsmPJ8VsdqvGZqqcKiqR6vqaB+c2w7cVFUvVdWTwDyLr/Q42RTwqrb8auAvJziX1fArwEeq6iWAqnp2wvNZLdcCH2Dxz/ukV1V/VlULbfUuFj8ndTL64WuGqup7wJHXDK2IqQqHV3C013dsmNBcVtKvAx9L8hSLv0WflL9hDfkZ4J8luTvJ/07yC5Oe0EpLsh04WFV/Pum5TMgvAZ+f9CRWyKr+nDphHmVdLkn+F/D3j7Lpg1V162rPZ7W9Uv3AVuA3quqPk7wLuA74xdWc33Jbot51wJnAhcAvADcn+Ye1xh/RW6Lm32LxktJJ5Xj+XSf5ILAAfHo153ayOunCoapG+WF3XK/vWAteqf4kNwLvb6t/BPzBqkxqBS1R768An2thcE+SH7D4Lp5vrdb8VsKxak5yHrAZ+PMksPj3+MtJLqiqZ1ZxistuqX/XSS4H3gZsXevh/wpW9eeUl5UW7QMuS3Jaks3AFuCeCc9pJfwl8C/a8luAxyc4l9XwP4A3AyT5GeBUTuKXtFXVV6vq71XVpqraxOJlh/PXejAsJck2Fu+xvL2qXpz0fFbQqr5m6KQ7c3glSf4V8F+BnwZuS/JAVV1cVQ8nuZnF/z9iAbiyqr4/ybmukF8GPp5kHfBd/uYNtyervcDeJA8B3wN2nMS/VU6z3wNOA/a3M6a7qurfTXZKy2+1XzPkJ6QlSR0vK0mSOoaDJKljOEiSOoaDJKljOEiSOoaDJKljOEiSOoaDJKnz/wEdoygx3P6p1wAAAABJRU5ErkJggg=="
},
"execution_count": 77,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df2['ACH'].hist(bins = 10, range = (-10, 0))"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ETC_Volume | \n",
" CFM_CO2 | \n",
" percent_Inside | \n",
" percent_Outside | \n",
" CFM_ETC | \n",
" ACH | \n",
"
\n",
" \n",
" Time | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 2016-02-22 12:12:00 | \n",
" 40000.0 | \n",
" -54.4 | \n",
" 0.0816 | \n",
" 0.04 | \n",
" -1307.692308 | \n",
" -1.961538 | \n",
"
\n",
" \n",
" 2016-02-22 12:22:00 | \n",
" 40000.0 | \n",
" -4.8 | \n",
" 0.0825 | \n",
" 0.04 | \n",
" -112.941176 | \n",
" -0.169412 | \n",
"
\n",
" \n",
" 2016-02-22 12:27:00 | \n",
" 40000.0 | \n",
" -16.8 | \n",
" 0.0804 | \n",
" 0.04 | \n",
" -415.841584 | \n",
" -0.623762 | \n",
"
\n",
" \n",
" 2016-02-22 12:32:00 | \n",
" 40000.0 | \n",
" -12.0 | \n",
" 0.0789 | \n",
" 0.04 | \n",
" -308.483290 | \n",
" -0.462725 | \n",
"
\n",
" \n",
" 2016-02-22 12:37:00 | \n",
" 40000.0 | \n",
" -22.4 | \n",
" 0.0761 | \n",
" 0.04 | \n",
" -620.498615 | \n",
" -0.930748 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 78,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df2.set_index('Time',inplace=True)\n",
"df2.head()"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 79,
"metadata": {
},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEACAYAAACwB81wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmYFNW9N/Dvr7unZ1+YjWE2ZhhmZYeBkU2GfXMJYCJoiDviEk3iEhGvSVQM8SbxzXvzxoRo8ryPN4mPN7kuucYbl8d4TdQgXJXriiBoMBoFNxBFYM79Y7p6qnuq16rqZc738zw8dHdVV53uqf7WqVOnTolSCkRENPR50l0AIiJKDQY+EZEmGPhERJpg4BMRaYKBT0SkCQY+EZEmGPhERJpg4BMRaYKBT0SkCV+6C2BWWVmpmpqa0l0MIqKssn379v1KqapY82VU4Dc1NWHbtm3pLgYRUVYRkTfimY9NOkREmmDgExFpgoFPRKQJBj4RkSYY+EREmnA98EVkiYi8KiK7ROQat9dHRETWXA18EfEC+H8AlgLoArBGRLrcXCcREVlzux/+NAC7lFKvA4CI3AXgVAAvOb2iXe8ewr8+/QbG15fiJ3/ajV3vHsLYuhJ8YWIdGsoL8I+PP8Pe/YdRU5qLxvJC/GXXfiwdW4Mzbv8r6sryceXiNhT4fbj9idfxzN4PsPaEkRhbV4Kndh/A4jE1eG7fh8jzeTGyogAHPzsGpRTmdlTj40+P4Rd/2YO6snzM66zGH3a8jabKQhT4vWgbXoxVtz2JE9uqsH5OC6679wW8/PbHmNxYhvVzWlBTmoe6snzsevcQ9uz/BG++fxizW6uQm+PB9r0fYE57FX72+Ou4bnknXvz7x8j3e/DKOwcxprYUj73yLlZNrsfho8dQUZiL8/7/Mzh3ZjOWjK3Bh4eP4q0PD+Nv73+K8fWleOr1A7jjiT348RmT4fUInn3zAzy+8z10N5Xjjy++g6173se8jmpsf+MDnD2jCV+YVIf3Dh7Bjn0forzQjwdfeAezWytRUZiLzhHFePP9wzj42TGMrCgIlv/Pu/ZjVFUh9r3/KX7w8E48ePls9CmFo8cVdr97CE2VhXj2zQ+w8x8HsXhMDeqG5WPJ/3kCAOARwO/zYOPyLrx38AjO7GlEz82PYmJDGb67chyOHOvDkaPH8fZHn2HP/k9w8oQROOsXz+CtDz91ejMK0VFTjFfeOQgAGFGah7ICPzpritFVW4Ln932E3z//d0xrLsfWPe8H37Nych3+/b/fAgCsmdaA32z926DlzmipwJO7DwSfF/i9OPz58UHzFef6sHJyHe565m9orynGjn0f4bQp9eioKcZND7wMABhfX4od+z5C54gSfHb0OHK8gp3/OITiPB86aorxzN4PAAAX97agblg+bn9iD4rzfNix7yMAwIT6UnTUlOCFv38Er0eCr5v5fR4U+r344PBRy+9pbnsVHnv1vZByHzxyDD6PYFRVIUrzc4LlCPl8eT4c/OyY5TLNcn0ezBpdiZmjK1Fe6EdTZSF8HsGBTz7Hh4c/xzN738fqqY34wUOv4rFX38MZPY04drwPu949hJPG1+LIsT5UFvnx4eGjOHVSLXI8HvzkT7vQNrwYY2pLsffAJ5jWXI7jfQrH+xT6lILXI3j1nYMoyvWF/G3+uucAvB4PpjWVw+cVeD2CurJ8iABPvLYfs0ZX4rV3D+FXT7+Bc2c148PDRzG+vhQl+TlYf+d2/HnXfqyZ1oCzZjQhx+tBeYEfeTlefHb0OErzc+DxSMzvww5x8562InIagCVKqfMDz9cC6FFKXWqaZx2AdQDQ2Ng45Y034rp+YJCmax6wX2AiojTau3l5Uu8Tke1Kqe5Y86X9pK1SaotSqlsp1V1VFfPKYEs79n3ocKmIiIYetwP/LQANpuf1gdcc9caBw04vkohoyHE78J8B0CoizSLiB7AawP1OrySedkAaui6bN9ry9d72Kjx//aIUlyZ+hX5vuotAmnE18JVSxwBcCuCPAF4GcLdS6kWn19M6vMjpRVIW6aottXz92mWdKC3Iwes3L8N1yzvxu4umAwA6R5Tgpi+MDZn3whNHBR+fP6s5+PjSudY7kz9+7UTUlOQNev3W0ydELOe1yzpCnj92ZW/I84t7W3Cead2xnB/HvD/98mQ8ePlsfHNJR8x5zc7saQw+Ls3Pwdz2/ubWsXUlIfOZd7ZfX9CGr1rsfDcs7UBFoT/iuq5a3B58vOPbmbuDHgpcb8NXSv1BKdWmlGpRSm1yYx0ecffMNmWntuHFAACPR3D+7FGYMrIcd543DXetOwFfPmFkyLxLx40IPj5pQm3wsTmAn/2nhcHH7TXFePSKOZjWXA4AaCjPx49WT8SKSfUozh3o/NZRU4y1gXXl5YTW6CVsu716SQcWdQ23/CyzRlcOeu26kwZ6OO++eRmevGZecCfw2qalePDy2VgydgQ6R5Tgot4WvHzDkuD8/3XVXPz6/B7s3bwcI0oH77hK8nMG1rO8E5fNbwUAeEWwa9PS4LS8wFHKBbObcfmCVlyxqB1Lx9YEpy8eMxwXzmnBradPDL72o9UDj0dWFOC0KfUD683LwR1nxTz3GNWwgpzYM2kq7SdtnWCV9/M6quN+v7l2R+7qGlESe6aEDfQ066gpxm8uOGFQ7dkwu7UKpfmDA2FiQ1nwcZ+p55rfN/ATGVbox62nT8DCQCgX5vpQX5YPALh8fhtOnVgHAFgxuS74npu+MBZHj/cBAHK8oT+3AlOTjlGz7RlVgTvPmwZgYLteNbke/3p+D359QY/lZwIAr0dQW5aP607qwt7Ny5Hj9aAz7LvO93sxvCQXANBYUYAZgZ3I7Wd14/TugVNtZ00ficsDAQ8Ah44cC34nXo/A5x0cG17PwGuXmI6KjK/yxLaBDhnG9wQAY+tKB30v5t+zN8FuijevGIenNsxP6D06GRKBb1XD/+7KcXht01KMrh5o7lk5qW7QfACwYVlnXOu55bTxwceVRbkh09ZMawifPauMqix0fR1br50fcvjutMqiXPzmghMwvaUCzTY+T0vlwDYjAuy8aSmeu76/dr9iUj1+/pWBGqixazBvgRuXd5reL2gNHGk0VYSWqdB0JFCSN7ATKg80f3TUlOCX50wNNj/NaKkcVBu//9KZ2LJ2Styf7d5LZuIXZ4fWoMfUluJ7pm37O6eODTkamdpUjmPHBwLfzKpXt7mJNTzMw+X6Bk83L/OBy2YBANqGF4UcCRgu6m0JeX5GT2NIHpiPRuwIb8rKVkMi8K3qAFVFucjxevDQ104Mvra+twXFedbXmm3dGLtWkG/6ESzoDD2CaKmKfB7BfIh/94XTY64nla5e0h/AiRwRJavaos0bABrLC2K+95ZV4yNOM0JldmslhkVpK47k6bAaYampSUAg8Ps8KCuwXq6RLaYKLrymwGkbXoRzZjThP746C9NbKhIql1IKc9urkW86Erjvkpkh84yvL8OiMTXhb41oRGk+5nVYNxtFMrq6CMeVdeAbzHWuXN9Aeb9z6hjL+Y0df3gzFxAa+MZjj0iwaczM55FgRe6X50wdVEaf14OHv35icMeRLLFMmQHfOjk7BhAYGoFv8bcwrlgzX7nmkYE22ZWT6vDc9QuDFzpUF1uHkaGsICdkPUbILOwajievmYdzZ0Y+gfbEN+figtnNePyq3mCbb6pVF+cOeu37X5yA1ur+2ueoKDssN/3lmnkhTShmm1YMnFid1Tq4Ddswt70a31jYhm+fbB0ukRgnGGss2rBzvP1/7Finh65d1okzexqxzHQOwNw27/d54PEIxtZZn1i2Eu2cVKSdppvycrw43tf/N/J5rCMjUonDj4QNRsUrVouNeduY0FCGZ/9pYcjJ75rSPPzw9InYu3k55rZXWy6zNXBFbSRWTXyGi3tbsO26BTHLeU6U338mGRqBH2PvG5zP9EOqLy8YVGvbsnYKWqutg6+5shAzWgZCZ0xt/yHesIIc1JblW14Sff1JXTh5Qi3KCvzYuLwLIyvcbzaJ5JEr5gx67dSJtVjYNRz3XDwjZU1SCqHhXl2ca9ksAABnTBvoKRIteD0ewWXzW0Nq5vG4YlF7yJWNVy9pxwWzmwPri2+bqizKxaYV40JqteZ3xrttmhmrdvEi+IQdCwR++HYe6Ur9bdctwF+vjXzU3GcsT2TQMszPjKPqhsBR4LBCf0h4r5naiHDx/u2A/t/8899aNOiI3dBUWYjKolxc1DtwXuKxK3uxanJ/89KiruH43qpxg97n9Qg6aootl7nnu8ssX58dpVLjlCER+OYQifalxdoMFo2pQXfTMOt1qIG21dBlRl7ql08YiX9ZMynGWt1j7udtbiM2GEcpkxqHJfQjidcPvzS4i+LYsJpWvGu16gLptIt7R2Pj8v5Dc6NcyYSu+au087WG7xzTKlAU4+O8dMNivHTDYpwwqr+ZKvwIrLIoF8Oj/M2MT2Z1NGOu1Y+qKsJtZ07GDyy2pRktFQmNPWPszNcEKhJXL2kPNof5Lc4lAMD0wOebb9ohNFcWIt8/0Ix4usVOxyMYdNLcEOm3Fu37csqQCHyzn3+lG09eM89yWsjGZbP6ZIT/iLLIf6RIP/azZzTZWne8jK50p5i6Gbqpflh+yPOFXcMHjQ1SXZI36LV4xnMy/0giNRM4KVjLthm6yeS9UYnIpBq+wfheCvw+FPh96G4qx2ubloYc/cajz9iBWHxB4Z976bgRIRUWFeW90Wxc3t+DqSR/8Hm8BtN5JPPJ4YYY55fMRb3+pK5gJ5FkjuxcHjetfx3ur8J95g0kL8eL2rJ8y/k8IgM/pgjLMvofzwg7wWbM/8g35uC366djYddw3Hbm5IgX5kTz9QVtCb8nGaX5Odi7eTn+b4JHGVYDOFldUBMu/AdofGcVhf6IfaNFBFURajaRakI9KTgP8sMvTURrdRHyfIlfDWv3aGlgZ5M5ou34YvXEsVxe4EcrEIslR//kIyv6Q3hJlJPVVy1uH3SCO17x/PWsAv3cWc22Tg6n4noit4dHzigisWsFX1/QhpqSPJw1vQmjrv1D8HVjAzV38zRfrGO5voQnOMvJDchO//mtGxdEnCYAfv6VKZi26dG4lxfpJK+Tlo0bEXIiNlnh4X/yhFr8/vm/R39P4H83R7JNllNb1EDvm8HT+mJ87IbyArx0w+KQXnPhLkmiIpaISDtAO3+yVFw/OiRq+PGK5wvNy/HinJnNFienXCqUi5zcgJL5+EZ3VK9Hol5AE6uHlGFSY//FUakIfKeEf2qjHTkao9fQ2RnU88Ppr7wtcEJzXP3g3jPx/H0L/D77R1IRdl+JLNbJSp0b59HCDYkafrxj6aTiC03n+tKxfo8M1MjCf6fxrD+RIq6f04IL79weswaYScI/3/j6MusZTYrzcpIeF91Jd184HeGtNU5tU3PaqvCnK3vRVFmI/YeOAEBwvB3X9+fJnIhPYjWJvodt+HEq8Me330r0+/zlOVOD44I42WMikd/MjREuXIlHKjagG02DkBk9GtxiNFH1ZUHi33FWd0q62blpWnM5pozsP1/iRgg3Ba6GDl925v913fk+CuPMMTuGRODHK9FOOnPbq3FxoP9tPPM/tWEe/uuquQPrS7SAFootulM+ec08/Pr8/nFVSiJcOQxEb8NP5HL8aIaZrmXYtGKgP3K8O5tEaozGMs2H/OsydByk+Z3Dced5PWk/ynOK1RASTjO+qroInS5SJaEeNhH+vgURhr6eGqHbNwB81TR+kVv0CvwkOksl8nsdUZqPxorYwwQkwurIorYsP+qVg4ZoZU/kcnwAeOXtj63XYXps7su88yZnxjAxC9bwTV/JtXGOg5SpGsrTG26ZwAhHY1C6cQlclWyHG/vivBwvNiztwG/Xz7CcHu1K6YIoJ6GdMiTa8FPB7gU4Ia8nsIzhYSc0g0Fq6rp3cW8L5ndWY9VtT4XMm+hIg9HsTfCuYlYjKtplnEjPppO2sfzhstn4OAtu4BPsRulCSBbm+rD12vnBcZCy4aAo2hZ44ZyWKFMjS8Xn1irw7V31mHp7Ny/Hf7/5Qchrg64IVP3jqB+3aNdO5uKPRKXyezH2X0Mo71Gcl2PZbJcOW9ZOiWOUUXe2Kauab7qC32q9STXNJfiWlHSycH0NGSSpM+3BkEk8ZSL9ASO9Hmn45qjlsphmHCInWsGPdHm5Gy7uTbwWNNCkM4QSP4MsGlMTHMo5XDq+cbf+zLEWG0/uZsFBiCWtAj8ZxoBnF7t8IceaaY0Rh262Eu3iHOPuSIlWGB79xpxBY6UbkrmaMpqrl3SEdD2MZ2djDEZlNUwupUYqat2pCtPI64kyxeZV0OneUQypwF85Of4acrzdLItyfdi7ebkr49H4TSEafo9VQ6QNxBid8UtTGwbNN/DJEtu8GsoLIo6VPrGh/0Tawgi34LNrSmPk3guGiqJc7N28POYVzuQ8J2rbf/7m3LjuO+E2Y6jqtgijWSYS5+kO8EQNmTb8uC5UiWNohVTyeQWfH+9/7JHE2vD8Pg9euXFJyE7DkOzgUvEwbpEXvi6nFOf5cDALTmLqys4mVT/M2R5syTplQi3G15UGrwMYbPCnzKDYsGVI1fBjScVJzETYLU1ejjfC8LDGwFTOmRC45+ucNnfujJVJO+JUCN9xZr6hdd4kcthHGMEziXVkWt4AQ6iGn43c/gk5edZ/fH0ZXrlxieUt6SgxT2+Yj4Lc7Poe3TxqDJfJF6sNnDtLazGSplcNP0O2o0SKEe/G7+BQ/xFZhf3sNmeGD7h07mjkeCV4g5QL50S/gra3vcqR9aZDTWme5Q1pMtmUwBWiZ8/InAHdMkGmZEq8tKrhZ9rfxhzM8QT7WdPj650ycDehJAqVoIIcL/w+D1ZPtXeLxBmjK/HapmVYf+d2AMCEGIOM/WztFLb1p1B18eAb1wxVVj8b47eU7T3E9Ap8U6im85AskVqBudul0Y4eS5+LV0VacXIYhXjLnOvzIrcou5pFKD6ZVjED+rNj501Lgze3T7ZBNt3NVVo16QDp/8LtiLaTstqZhZ80Mu58ZfTTd8MdZ3Xjp192ZmA2okzi93kSyo9MjBqtavjZ5MXvLAaQ3A6qubIQj+98D2VhtxU0Llya0ODe4FTzO93pp0+UKvH95DIwzeOgReCX5ufgo0+PZtWfqDBwtyhzk068B5EblnWgt70Kk8IuZmobXoz//NpstFZHuuCEKP3SXTOOrztldnbT0SLwDenekJJh3qwi3Qg8XK7Pi9526/7yHTXJ35vWSnZu9kTOSLSvfbojyLU2fBH5toi8JSLPBf4tc2tdsWTizaCBxO+iNa/DnYueiCg10p1Ebtfwb1VKfd/ldcTNvDdO5xefSK2gNL+/Vr9mWkNWn3BOVIbuo0kDTv3Moi3m0SvmINfnwazvPebMyuKkRS8dc3YsDwy8lchQxKlitaG1VBXh39ZPx7dOTv7etkTZJBsqNslWSIxP1lJVlJaxhdwO/EtFZIeI/EJEYg+H6BbTDTmbKguxd/PyiON+O6GyyB97JkTeaMJ3RlObyjN2SAPWxElnWbBvCmGrSUdEHgFgdXPUjQBuA3Aj+uP2RgA/AHCuxTLWAVgHAI2NjXaKE1Oq/jj3XzoLr7xjfQ/YeMoxJkX39IxXIuP025VtPyByT7QbfrtpKG+Ctn7JSqkF8cwnIj8H8B8RlrEFwBYA6O7uHhL1xdqyfNSWJX9z6kw9yWwl0RPPsVQW9Y8imW2Di5Gz/vNrs9M2nHI2NCkly7Wqm4iMUEq9HXi6AsALbq0rFlOLDjkgxys4erz/W3V637RhaSe6RpSgty17B0cj+5zuPpwO1vfGTX05zNw8Vr9FRCaiP2/3ArjQxXVFpYJjy2RH5GdCOauLc/HuwSMpX2++34vV09xt2iPSlWsnbZVSa5VS45RS45VSp5hq+xQQqXKcCU06j14xJ675MqCoRCnn9HZ/y6rxzi4wAu26ZWayTLpDTrFpvPbwUpk3dqfb8ImyiVO/2C/ZHF48XnoEfnD0yMw2rr6/3bLNxS6jTmMNn4Yar4s3krBa8lfivM+FEziWTjqFheWKSfWY2DAMzVHutxlNRaEfBz753IGCxY95nx52bzhDkfW2V+GOP++JOo9TR7apvqmMFoGfac0O0XY8yYY9ADy1Yb4rnzXaSeRMON+gG13uPJUuidTwM64SGYMWTTqGTGkjN8pRXhjfFbnx8vs8yPW5339dRXhMNBQ4lROZkjdmWgR+plVC/T4PvrdqHP5t/fR0FyUu0WoxmfbdElFkmjTp9Mukw6/Tp2ZPX/Oooc7ApyEmk3LCaVrU8MkdF84ZhZJ8LeoMREMCA59iCq/xGCdqr1rUnhFXBRM5aXR1kWvLTvfvRY/AN/rhM5scle6Nl8hp31zSERzAL5p4zl0tGz/CgRI5S4vAN7oqZuJZ82xUZHGDdbec0dOIM3qy53wH6SVapsxpq8q4LrRsgE2zX1/Qg3uffSvdxYgqfJO+55KZePzV9+Dzul9fuHnFONfXQaQLLQI/k7sOzmipxIyWynQXIyEtVUVoqXKvnZMo02VwpESlSZNOPzY5E5GjEsyUdEeQFoFvSPeXna14cpZoaNAi8DneCxE5KVgFyrJo0aIN38CaanKuW96Z7iIQZZRrlnZABDhlYm26i5IQLQKf97S1Z+Xk+nQXgSijVBTl4pbTJqS7GAnTpEmn/39W8IlIZ1oEPhFRRkhzpZOBT0SkCa0CnydtiUhnWgU+EZHOtOilQ0SUiDN6GvHZ58fTXQzHMfCJiMK4NWhfukfsZZMOEZEmGPhERJpg4BMRpUi6Owoy8ImINKFF4I+vL013EYiI0n2hrb3AF5EvisiLItInIt1h0zaIyC4ReVVEFtsrpj13nteD3186K51FICJKO7vdMl8AsBLAz8wvikgXgNUAxgCoBfCIiLQppdLSsbU0PwfjWMsnIs3ZquErpV5WSr1qMelUAHcppY4opfYA2AVgmp11ERFlu/Iif1rX79aFV3UAnjY93xd4jYhIS5tWjMWqNN9bImbgi8gjAGosJm1USt1ntwAisg7AOgBobGy0uzgioox0Zs/IdBchduArpRYksdy3ADSYntcHXrNa/hYAWwCgu7s7y+4QSUSUPdzqlnk/gNUikisizQBaAWx1aV3kklGVhekuAhE5yFYbvoisAPAvAKoAPCAizymlFiulXhSRuwG8BOAYgEvS1UOHknfvpTPxwSefp7sYROQQW4GvlLoHwD0Rpm0CsMnO8im9SvJyUJKXk+5iEJFDtLjSloiIGPhERNpg4BMRaYKBT0SkCQY+EZEmGPhERJpg4BMRaYKBT0SkCQY+EZEmGPhERC4q8HvTXYQgt8bDJyIiAH+6shfvHjyS7mIAYOATEbmquiQP1SV56S4GADbpEBFpg4FPRKQJBj4RkSYY+EREmmDgExFpgoFPRKQJBj4RkSYY+EREmmDgExFpgoFPRKQJBj4RkSYY+EREmmDgExFpgoFPRKQJBj4RkSYY+EREmmDgExFpgoFPRKQJW4EvIl8UkRdFpE9Euk2vN4nIpyLyXODfT+0XlYiI7LB7T9sXAKwE8DOLabuVUhNtLp+IiBxiK/CVUi8DgIg4UxoiInKNm234zSLyrIg8LiKzXVwPERHFIWYNX0QeAVBjMWmjUuq+CG97G0CjUuqAiEwBcK+IjFFKfWyx/HUA1gFAY2Nj/CUnIqKExAx8pdSCRBeqlDoC4Ejg8XYR2Q2gDcA2i3m3ANgCAN3d3SrRdRERUXxcadIRkSoR8QYejwLQCuB1N9ZFRETxsdstc4WI7AMwHcADIvLHwKQTAewQkecA/BbAeqXU+/aKSkREdtjtpXMPgHssXv8dgN/ZWTYRETmLV9oSEWmCgU9EpAkGPhGRJhj4RESaYOATEWmCgU9EpAkGPhGRJhj4RESaYOATEWmCgU9EpAkGPhGRJhj4RESaYOATEWmCgU9EpAkGPhGRJhj4RESaYOATEWmCgU9EpAkGPhGRJhj4RESaYOATEWmCgU9EpAkGPhGRJhj4RESaYOATEWmCgU9EpAkGPhGRJhj4RESaYOATEWmCgU9EpAlbgS8i/ywir4jIDhG5R0TKTNM2iMguEXlVRBbbLyoREdlht4b/MICxSqnxAHYC2AAAItIFYDWAMQCWAPiJiHhtrouIiGywFfhKqYeUUscCT58GUB94fCqAu5RSR5RSewDsAjDNzrqIiMgeJ9vwzwXwYOBxHYC/mabtC7xGRERp4os1g4g8AqDGYtJGpdR9gXk2AjgG4FeJFkBE1gFYBwCNjY2Jvp2IiOIUM/CVUguiTReRswGcBGC+UkoFXn4LQINptvrAa1bL3wJgCwB0d3crq3mIiMg+u710lgC4GsApSqnDpkn3A1gtIrki0gygFcBWO+siIiJ7YtbwY/gxgFwAD4sIADytlFqvlHpRRO4G8BL6m3ouUUodt7kuIiKywVbgK6VGR5m2CcAmO8snIiLn8EpbIiJNMPCJiDTBwCci0gQDn4hIEwx8IiJNMPCJiDTBwCci0gQDn4hIEwx8IiJNMPCJiDTBwCci0gQDn4hIEwx8IiJNMPCJiDTBwCci0gQDn4hIEwx8IiJNMPCJiDTBwCci0gQDn4hIEwx8IiJNMPCJiDTBwCci0gQDn4hIEwx8IiJNMPCJiDTBwCci0gQDn4hIEwx8IiJNMPCJiDRhK/BF5J9F5BUR2SEi94hIWeD1JhH5VESeC/z7qTPFJSKiZNmt4T8MYKxSajyAnQA2mKbtVkpNDPxbb3M9RERkk63AV0o9pJQ6Fnj6NIB6+0UiIiI3ONmGfy6AB03Pm0XkWRF5XERmO7geIiJKgi/WDCLyCIAai0kblVL3BebZCOAYgF8Fpr0NoFEpdUBEpgC4V0TGKKU+tlj+OgDrAKCxsTG5T0FERDHFDHyl1IJo00XkbAAnAZivlFKB9xwBcCTweLuI7AbQBmCbxfK3ANgCAN3d3SrB8hMRUZzs9tJZAuBqAKcopQ6bXq8SEW/g8SgArQBet7MuIiK3+L39UejzSJpL4q6YNfwYfgwgF8DDIgIATwd65JwI4AYROQqgD8B6pdT7NtcbOuyYAAACAUlEQVRFROSKi3pb8PmxPqydPjLdRXGVBFphMkJ3d7fatm1Qqw8REUUhItuVUt2x5uOVtkREmmDgExFpgoFPRKQJBj4RkSYY+EREmmDgExFpgoFPRKQJBj4RkSYy6sIrEXkPwBs2FlEJYL9DxUmlbC03wLKnC8ueeplc7pFKqapYM2VU4NslItviudos02RruQGWPV1Y9tTL1nKbsUmHiEgTDHwiIk0MtcDfku4CJClbyw2w7OnCsqdetpY7aEi14RMRUWRDrYZPREQRMPCJiDTBwCci0gQDn4hIEwx8IiJN2L2JOVFWEpEKAI8GntYAOA7gvcDzw0qpGWkpGJGL2C2TtCci3wZwSCn1/XSXhchNbNIhCiMihwL/94rI4yJyn4i8LiKbReRMEdkqIv8jIi2B+apE5Hci8kzg38z0fgIiawx8ougmAFgPoBPAWgBtSqlpAG4H8NXAPD8CcKtSaiqAVYFpRBmHbfhE0T2jlHobAERkN4CHAq//D4C5gccLAHSJiPGeEhEpUkodSmlJiWJg4BNFd8T0uM/0vA8Dvx8PgBOUUp+lsmBEiWKTDpF9D2GgeQciMjGNZSGKiIFPZN9lALpFZIeIvIT+Nn+ijMNumUREmmANn4hIEwx8IiJNMPCJiDTBwCci0gQDn4hIEwx8IiJNMPCJiDTBwCci0sT/AoqhFNNjRBx2AAAAAElFTkSuQmCC"
},
"execution_count": 79,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df2['ACH'].plot()"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Time | \n",
" ETC_Volume | \n",
" CFM_CO2 | \n",
" percent_Inside | \n",
" percent_Outside | \n",
" CFM_ETC | \n",
" ACH | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2016-02-22 12:12:00 | \n",
" 40000.0 | \n",
" -54.4 | \n",
" 0.0816 | \n",
" 0.04 | \n",
" -1307.692308 | \n",
" -1.961538 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 80,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df2.reset_index(inplace = True)\n",
"df2.head(1)"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"df2['Time'] = pd.to_datetime(df2.Time)"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Time | \n",
" ETC_Volume | \n",
" CFM_CO2 | \n",
" percent_Inside | \n",
" percent_Outside | \n",
" CFM_ETC | \n",
" ACH | \n",
" Day | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2016-02-22 12:12:00 | \n",
" 40000.0 | \n",
" -54.4 | \n",
" 0.0816 | \n",
" 0.04 | \n",
" -1307.692308 | \n",
" -1.961538 | \n",
" Monday | \n",
"
\n",
" \n",
" 1 | \n",
" 2016-02-22 12:22:00 | \n",
" 40000.0 | \n",
" -4.8 | \n",
" 0.0825 | \n",
" 0.04 | \n",
" -112.941176 | \n",
" -0.169412 | \n",
" Monday | \n",
"
\n",
" \n",
" 2 | \n",
" 2016-02-22 12:27:00 | \n",
" 40000.0 | \n",
" -16.8 | \n",
" 0.0804 | \n",
" 0.04 | \n",
" -415.841584 | \n",
" -0.623762 | \n",
" Monday | \n",
"
\n",
" \n",
" 3 | \n",
" 2016-02-22 12:32:00 | \n",
" 40000.0 | \n",
" -12.0 | \n",
" 0.0789 | \n",
" 0.04 | \n",
" -308.483290 | \n",
" -0.462725 | \n",
" Monday | \n",
"
\n",
" \n",
" 4 | \n",
" 2016-02-22 12:37:00 | \n",
" 40000.0 | \n",
" -22.4 | \n",
" 0.0761 | \n",
" 0.04 | \n",
" -620.498615 | \n",
" -0.930748 | \n",
" Monday | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 82,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df2['Day'] = df2.Time.dt.weekday_name\n",
"df2.head()"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"#df3.Day.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"InfiltrationData = df2.drop(df2.columns[[1,2,3,4,5]], axis =1 )\n",
"InfiltrationData.to_csv('FinalData.csv')"
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Time | \n",
" ACH | \n",
" Day | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2016-02-22 12:12:00 | \n",
" -1.961538 | \n",
" Monday | \n",
"
\n",
" \n",
" 1 | \n",
" 2016-02-22 12:22:00 | \n",
" -0.169412 | \n",
" Monday | \n",
"
\n",
" \n",
" 2 | \n",
" 2016-02-22 12:27:00 | \n",
" -0.623762 | \n",
" Monday | \n",
"
\n",
" \n",
" 3 | \n",
" 2016-02-22 12:32:00 | \n",
" -0.462725 | \n",
" Monday | \n",
"
\n",
" \n",
" 4 | \n",
" 2016-02-22 12:37:00 | \n",
" -0.930748 | \n",
" Monday | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 85,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df3 = pd.read_csv('FinalData.csv', index_col = 0, parse_dates=True)\n",
"df3.head()"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Time object\n",
"ACH float64\n",
"Day object\n",
"dtype: object"
]
},
"execution_count": 86,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df3.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
"df3['Time'] = pd.to_datetime(df2.Time)\n",
"#df3['Day'] = pd.to_datetime(df2.Time)"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Time datetime64[ns]\n",
"ACH float64\n",
"Day object\n",
"dtype: object"
]
},
"execution_count": 88,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df3.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ACH | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 1645.000000 | \n",
"
\n",
" \n",
" mean | \n",
" -1.167449 | \n",
"
\n",
" \n",
" std | \n",
" 0.755820 | \n",
"
\n",
" \n",
" min | \n",
" -4.958678 | \n",
"
\n",
" \n",
" 25% | \n",
" -1.273469 | \n",
"
\n",
" \n",
" 50% | \n",
" -0.871972 | \n",
"
\n",
" \n",
" 75% | \n",
" -0.708861 | \n",
"
\n",
" \n",
" max | \n",
" -0.600000 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 89,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df3 = df3[df3['ACH'] < -0.6]\n",
"df3 = df3[df3['ACH'] > -5.0]\n",
"df3.describe()"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Time | \n",
" ACH | \n",
" Day | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2016-02-22 12:12:00 | \n",
" -1.961538 | \n",
" Monday | \n",
"
\n",
" \n",
" 2 | \n",
" 2016-02-22 12:27:00 | \n",
" -0.623762 | \n",
" Monday | \n",
"
\n",
" \n",
" 4 | \n",
" 2016-02-22 12:37:00 | \n",
" -0.930748 | \n",
" Monday | \n",
"
\n",
" \n",
" 8 | \n",
" 2016-02-22 13:03:00 | \n",
" -0.766667 | \n",
" Monday | \n",
"
\n",
" \n",
" 10 | \n",
" 2016-02-22 13:13:00 | \n",
" -1.320388 | \n",
" Monday | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 90,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"df3.head()"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 91,
"metadata": {
},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd4XPWZ6PHvqxkVjyQXbEtuGBt3mWJAIZhqMHYIGAgQCCFLCSEmyU3g7t7UhYT0sElu7u5CsrQkBEJMEpa2QMAGG7AxDtgEcMcFF9nGkrvVpdF7/zhnpJE0o9H09n6eR49mzhzNe440Ou/5dVFVjDHG5J+CdB+AMcaY9LAEYIwxecoSgDHG5ClLAMYYk6csARhjTJ6yBGCMMXnKEoAxxuQpSwDGGJOnLAEYY0ye8sbzwyJyDPBnYBywDbhGVQ+G2M8PrHaf7lDVy/rz/sOGDdNx48bFc4jGGJNXVq1atU9Vh/dnX4lnKggR+TlwQFXvFpFvA0NU9Vsh9qtX1bJo37+6ulpXrlwZ8/EZY0y+EZFVqlrdn33jrQK6HPiD+/gPwKfifD9jjDEpEm8CqFTVPe7jj4DKMPuViMhKEVkhIpYkjDEmA0RsAxCRl4ERIV66I/iJqqqIhKtPOk5Vd4nI8cBiEVmtqlvCxJsPzAcYO3ZspMMzxhgTo4gJQFUvDPeaiOwVkZGqukdERgK1Yd5jl/t9q4i8CpwChEwAqvoA8AA4bQARz8AYY0xM4q0Ceha40X18I/BMzx1EZIiIFLuPhwFnAevijGuMMSZO8SaAu4E5IrIJuNB9johUi8hD7j7TgJUi8h6wBLhbVS0BGGNMmsU1DkBV9wOzQ2xfCdziPl4OnBhPHGNM9HYeaKS8xMtgX1G6DyVn7djfyGsf1HL9zHHpPpSY5ORI4L+s3Mkbm/eFfG1/fQtPvlOT4iMy8Wr3d3C4qY2PDjezpa6eNbsO8/et+1myoZbn39/DE6tqeGntR7yz4yA1BxtpbvOn+5DT7pyfL2HGDxdF9TO7DjUx7tvPs7rmcK/XXlm/l88+sIJoxg61tPu55r43eW/noaiOA2DJhlq21tVH/XOpdO4vlvDdZ9ayZlfv39fqmsOccNdL1Le0p+HI+ieuEkCm+uYT7wOw7e5Ler32i5c28vjbO5k9rZJBAwpTfWg5r83fQWOLn4bWdhpb/TT2/B7qNXdbU2vwd3/n88YWP63+jqiPZWCJl4qBJQwvK2Z4eTEV5c5353FJ5+MhvkJEJAm/jczQ0u6n2Ovp174PLd0KwPxHV/Lmd7oX7m99dBXtHUp7h1Lo6d/va8Oeo7y17QDffWYNz3717F6vr919mJJCDxOG9x4n+vmH3wZC/x9nmsNNbb22ffq+5bS0dzD/kZX86YtnpOGoIsvJBBDO4cY2nn53FwAdHfnbwUhVafV3BF1o22lo6XnxdbY1tflpaOm6YHdemFt6XuCdx23+/v9eCwRKi7wMKPJQWuzFV+TBV+RhsK+IUYM9+IrcbcUeSgOPi7r28xV5O18rKSzgSFM7dfXN1B1tofZIC3X1Lc7joy28u/MQtUebaW7rnUgKPcKwnkmirJjhbvKoGFjcmURKCvt3Ic0kb314gHMmdZ8Z4GBDK0NKe1cN/f6NbQDsOdxMc5s/qee7dvdhLvnPZUB2XOT7sq++pde2lnbns7Z8y/5UH06/5VUC+OuqnSEvAJlKVWlp7+h9oXUvvg09t7V1vdb99d532u1RJEBPgeArCroIFzsX36FlRYwt8jkX8CIPA4q8lBZ58BV3v0g7rwVf5J3vxd6CJNx5Dwr7iqpS39JO3dGuxFB31EkUgYSx61Az7+48xP6GVkLVdAws8YYsRfQsXQweUEhBQWaUKhZvqO2WAF5a+xG3PrqKP33x45w5YVjYn3t4+Ta+dN6EpB3X8s2pvzC+X3OIIb4ijj3Gl9D3vf3xd7l8xuiEvNemvUfxFXsZPXhAQt6vL3mTADo6lEdXbE/Kewcu1A09Lr6BO2XnLrrrQtz1mp+mNvdOu+cFu8VPY5sffxQXam+BdLuTDlxoh5cV4yt2L84976DdC3bnRTpom6/QudgXeZJxoU49EaG8pJDykkKOD1HlEKzd38GBhtauJHG0hdqjzd0Sxns1h6g90kJTiPYGb4FTqgguPQQnieHlJZ3Pk12qeGV9Ld+bV9X5N7z10VUA3Lt4c58J4N7Fm/n0aWMYVlaclOP62d/WJ+V9QznS3MbPXljPgrd2cvq4Y/jLl2amLHZ/qCpvbN7P/a9vYekmp/0yFaWivEkAr2+qY/v+Rk4ZO5h/7DhEzcEm9h5t7nHx7bpTDr5zbgi6IDeGqA5pbG0nmhqlIk+Bcxdd2P3iO2JgSddFuLj7RbqrqiT4It79tSJvTrbpp4XXU0DFwBIqBpZE3Ld7qaK5Vwljz+Fm3qs5zP6GlpClivJAqaKsuI82i2KG+Ir6XaoIruLccaCRLXUNTKzonvRCVVsEa27z86tFH/DTK2LvxNfXv8WJYwbH1DgMUHu0mSG+Igo9kT/zizfs5V+fXEPt0WamjRzIyu0H2FffkrTEFo12fwcvrPmI+1/bwtrdRxhentpjypsE8Oib2xlWVsxlJ4/iHzsOcem9yyL+TLG3IOSd8mBfYa+LcKAuuttddI966gHutv58aE32KCv2UlbsZfyw0j73a/d3cKCxtVv7RF2PEsbqmkPUHW2hobV3qcJTIAwrK+qqegqUMIIflzmvFfT4iC3ZUNsrAUTyT2ccxyNvbuOGmccxdcTAqH62p1Al2ZNGD4opAdQeaebsf1vCwAGFXHHKKD592rFMGVHea79Dja388H/W8eQ/djG5soz7rz8LT4Ew755lLF5fyzUfOzamcwk40ty74be/Glvb+cvbO3lo2YfUHGzi+OGl/NtVJ/KpU0Yz5c4X4zquaORFAth5oJHFG2v56vkTufLUMZQUenpUl3RdsAPbBhR68NqF2iSQ11NARXkJFeWRSxUNgVJFoH3iaHO3toq9R5pZvesw++tbQpY+gwsKU0eU88qGvXzx3OOjOt7bZ0/iqX/s4ifPr+eRm0+P6mcD3tnuLA+ydveRXq8F3whF01Pp/ZrDtPo7GDfUx+/f2MaDSz/kxNGD+PRpY7js5FEMKS3ixTUfcefTazjU2MptF0zkf10wkWKvB1Vl9OABLFy3N+4EsKU2+i6q++pbeGT5Nh5ZsZ1DjW1UHzeE782r4sJplWlpM8qLBPDHv2+nQITrPj6WQQMK+ezpNsmcyWylxV5Ki72Mi1Cq8Heo21bRvepp5bYDLNlYB8AFUyu4//WtHG5q69b1Wej7gjOktIjbZk/iR8+tY8nGkNN8RVTXRzVTcFfSVdsOcubE8O0RwdbtcZLJwzefTkubn2fe3c0Tq2q469m1/OT59UwdWc77NYeZPmogf7j5Y0wf1dUxQESYU1XJgrd20Njajq8o9kvg5qAEUFbc9/ts29fAQ8u28teVNbS0dzCnqpJbzz2e6nHHxBw/EXI+ATS3+fnz2zuZM62SkYOS36puTCp5CqSznSDY0k11nQlg9rQKfvPqFpZuqmPeSaM69xlQFPmO+/ozjuOPK7bz4+fXR9VzrD8ag6q5Fm+o7XcCWL/nCOOG+jqr3m4+ezw3nz2etbsP89+rdrF0Ux1fnzuZW8+bELK6dW5VJQ8v38bSTfv4xPRQEx33z+agQWrTRvauggp2wf99FW9BAVeeOppbzjk+6uq4ZMn5BPA/7+3mUGMbN8w8Lt2HYkzKBF+sZxw7hCG+Qhavr2XeSaO48pTRPPmPXVx5auRui0XeAu64eBq3PBLbynx9DRr+89s7Ox8v2VjLnfOq+vWe6/YcYfqo3m0S00cN6na3H87Hxh/DwBIvC9fujSsBbKlt6HzcGKLNJtiXzpvATWeO61englTK+UruR1dsZ2JFGTMnDE33oRiTMu1BA/I8BcKsKRUs2ViLv0MpLizo3N4fs6dVcNbE2P5/NEw/oPV7jnQb3b2lroEd+xsjvt/R5ja2729kWhyN0oWeAmZPq2Txhr20xzDCPGBLUAmgKUIC+OZFUzPu4g85ngDe3XmI92sOc8PM43KiH7sx/dXR49b7gqkVHGxs492dhzrvyiO1AQSICHde0nV3noj/pAdf39r5ePbUCgBe/SByO8PGj44CUBWiBBCNOVWVHGxsY6XbSB2tlnY/2/f3XQIY6o60vu7jmdvmmNMJ4JHl2ygt8nDFKYkZoWdMtuh5kT538nA8BcLiDXtjer9pI2O84IYoAOw61MSz7+3m82eN46mvnMl915/G+GGlLNkQOQEEGoDjTQDnTh5OkbeAReti+31s39/YrfdVY2vvCd8Cd/wjMvDOPyCnE8Bz7+/hylPHUF5ik76Z/DZoQCHVxw3hlfW1XSWANBWKf7fsQxS45ZzjOWXsEAo9BcyaMpzlW/ZHnMV13e4jDPYVxn1RLSv2ctaEoSxc91FUs5sGbO7RBTTUaPDAnf811fF1N02mnE4Arf4OrrfGX5OHQlV5zp5WwYaPjrL7cFPC4725ZT9rdh3uNeCr56X1cGMbC97awWUnj+o21835Uypoae/gza3O/EDhLsrr9xyhauTAhFTpzp0+gp0Hmti492jUP9tzDECbX3sdc6CJJUOmhAoppxPAzOOHMrmy7+5ZxuSLC6ZWAnTONRPKVHdEbVUUVT4HG1q57qEVzLtnGTN+uJBb/vA2Dy3dyppdh3vNuvvHv2+nsdXP/B6D0k4ffwwDCj286lYDhbr+t/s72PDR0diro3qYPa0CEVi4NvpqoM119b0ma+tZCoihYJFyOd0N1Lp+mnwV6qZzwvBSxh7jY8eB8L1tjjY7ddmTKvvfT/1IcxuqcPVpY/B6hBVbD/Dy+t71+c1tfn7/xoecN3l4r4t4SaGHsyYOZfHGWr6vofsObdvfQEt7R1TJqS8V5SWccuxgFq3by22zJ0X1s5tr65lQUcauQ12lqYYWf7eBZZ3nYCWA9JhTVZnuQzAmLUJdQEWEC9weNxD6uhS4oEUzaDLQA+aCqRX87MqTWPL1Waz4zmz+49oZ3SYofPKdXeyrb+XW80JPSTFrSgU7DzSxpa6hVy8m6JpOIt4G4GBzqkawetdhdh/qf7VYR4eyta6BCcO7j9IO1RAM/e9tlQ5xJQARuVpE1opIh4hU97HfRSKyUUQ2i8i344kZDZvLx5juZk+riLwT0TUQB6o+SoJGFo8YVMLlM0bzs6CZRB9cupWTxgxi5vGhxxTMmuKsWfDqxtqQ1Sfr9hyh0CMhVw+L1dzpzk3iy+v7Xw20+3ATTW3+XqN5G1p6NARnQR1QvFfINcCVwOvhdhARD/Br4JNAFfBZEenfkD9jTEzCXb9PHx9+7plo1p4IFhgE5YuwrsGH+xq49dwJYRtwxwzxMbmyjCUba0OWANbvOcqkivKETns+YXgZxw8vjaodINADaGKPRNQQrgSQuQWA+BKAqq5X1Y0Rdjsd2KyqW1W1FXgcuDyeuJH89sZq/pphCz4YkwmKvZ7OAUo9bQsa2BSNQAIINbdQ8MVv7DE+Ljqh76kXzp9SwVsfHgi5kPq63UcSWv0TMLdqBCu27g+5rm8oW+qc39OEXiWAzF38PZxU1JGMBnYGPa9xtyXN7GmVfCzNs+wZk0593XVeerIzIVzP8THrgqZsjqb2otGtAvKFSADB7/PFc4+POP3ErCkVtPmVNzZ376lUe7SZffUtCesBFGxOVSXtHcqr/ZzxdHNtPYN9hb0SaaT5gDJRxAQgIi+LyJoQX0m5ixeR+SKyUkRW1tXVJSOEMXlt3kkjARg4oHsnwFBz9ofSswqnya36GBBhauWrTxsT8b2rxw2hvNjLKz16Ea3f404BkYQEcMqxgxlWVszCfo4K3lJbz8ThZb1+D9lYAojYDVRVL4wzxi4geCjcGHdbuHgPAA8AVFdXZ34rijFZquddfmCahWh1VgGFaAMIrhbqz9rHhZ4Czpk8jNc+6H7zFyidJCMBFBQIc6oqePbd3f1amGZLXT0XTuvdwzAbE0AqqoDeBiaJyHgRKQKuBZ5NQVxjTAiBG9fg67+qsm734Zjer68qoMBCKdHMJjprSkWv+vj1e44wevAABvmSM63L3KoRNLT6eXPL/j73O9jQyv6G1pDz+YdaxjPTxdsN9AoRqQFmAs+LyEvu9lEi8gKAqrYDXwVeAtYDf1HVtfEdtjGmL9H2PKk92sK++lYqBzoLy4SbxjmU5lY/Is4a2uEURHFAsyYP77Vt3Z4jSan/D5g5YSi+Ik/EyeECU0BPqOg+BsBbIGHHAWSyeHsBPaWqY1S1WFUrVfUT7vbdqnpx0H4vqOpkVZ2gqj+J96CNMfFwLsbBc9cEqlj6s6BKT42tfgYUehI25XrFwBJOGN11sW9u87O1rp6qCKtuxaOk0MOsKcNZtG5vr+krgnV1Ae1+LL4iT+9xAFnARkoZk4MCo08Dg6u6vRbiOr3Wrf75wWXTOeP4Y/jCWeP7HauxzR+y+ice50/pGrC28aOjdGhiRwCHMqeqktqjLby/K3xV2Obaeoq9BYwe0n2kdGmxN/9KAMaYzNZXd87gl9buPsJxQ30ce4yPx+fPjGr1quZWf78aeKMxKygBdK4BMDL60kk0LphSiadAWLj2o7D7bKmrZ/yw0l7dWUuLvVYCMMZkiD5qY0K9FG6d3f5obA1fAoi1G98pxw4G4Pwpw1m3+whlxV7GDOn//ESxGOQr5OPjj+mzHWBzXX3IBuDSIk/YkcCZzBKAMTlolDuZ26ljh4Tfyb06H3HX2Y2l/h+cuYBCdQGNR0GBMKysmJGDB7B+zxGmjSynIAUT68+tqmRTbT0f7us9Krq5zU/NwaaQCcBX5KXRSgDGmEwwZUQ5L//LeXztgom9Xgs01gZ6+myIc5BVU6s/5DQQiaCqbgJIbv1/wIXuDMKL1vWuBtpa14AqISejKy3uXQIIlH4yeCogSwDG5KqJFWX9umsONADHXAXU1t5tHvxg8V78dh5ooqHVn5QBYKGMGeJj+qiBISeH2+x2AQ1XArCBYMaYjBe4KAcaiNfuPsKwsuKoGn6DNbWGrwKKdyh/ohaBj8acqkpW7TjIvvqWbts319YjAuOHlfb6mdJib/4NBDPGZL94Z9lMZhXQgYZWCoSULu06t2oEqvBKjzUCttTVc+wQX8geT6VFHhoTVAKoKC9OyPv0R04vCWmM6a1zKgiF1vYONtUe5bwQ4wX6KxmNwMEmDC9LeDfTvkwbWc7owQNYtG4vn/nY2M7tW2pD9wAC8BV7aWzz09GhcTdWL/76LJrbUlOasBKAMXkmeInCD/Yepc2vcdWx99UNNBFSWf0DTiP53OmVLN20r3Nwl79D2bqv9zKQAaVFHlR7Lwwfi7JiL8PKUlMKsARgTJ5SuurYY20A9ncoLe0dSakCOtzUCpCyHkDB5lRV0tLewesfOOsS1BxspLW9I2wJoNSd9C7bxgJYAjAmzwRPBbFu9xF8RR7GDQ19ZxtJoKoiXBXQmROG8unTxvCzK08M+Xpf2vxOE3KqegAFO33cMQwaUMhCtzto5xxAYROAc/7ZNhbA2gCMyVOqytrdh5k2cmDM9daBVbDCVQEVegr45dUnx3yMkJ4SgNdTwOypFSzeUEu7v6NrFtAwC9IHusFaCcAYkxU61FlpK9bqH+gqASSzkXZ4CnvFBJs7vZJDjW28ve0gm2vrGVZWxGBf6PWUSwMJIMtKAJYAjMlTOw40UN/SHncDMBB2IFg2O2fScIq8BSxat5fNtfUh7/7LS5zzDlQBZVsJIPf+asaYPgXaANbGsQZAQKCXTDJ7AaVLabGXcyYOY+G6jzja3M4l7lrKwZZ8fRb76ls6F7zJtjYAKwEYk6fW7j6Ct0CYVBm6Xrs/mlJQBZROc6oqqTnYxOGmNiaGKAEMKytm6oiBnQkwVAkgUQvlJIMlAGPyTGAcwFZ3auN4Lt5NERqBs93saZWdJaZwPYAguA2gKwH0tRZDprAEYEyeCVzQErHKVlMfC8LnguHlxZ1Tak/oKwG44wAas2w+oHgXhb9aRNaKSIeIVPex3zYRWS0i74rIynhiGmMSJ94+9oELXq5WAQF87uNjOWXsYEb2MVlekbeAQo9k3Yyg8TYCrwGuBO7vx77nq+q+OOMZY+IUXCUdTwMw5H4VEMCVp47hylPHRNzPV+TNuhJAXAlAVddDZjdyGGPCS1QVULJmA80mpUWerCsBpKoNQIGFIrJKROanKKYxJoRAI/CYIQMYNKAwrvfqrALyWgLwFXtzbxyAiLwMjAjx0h2q+kw/45ytqrtEpAJYJCIbVPX1MPHmA/MBxo4dG2oXY0wCxDMCOKDZnQo6Fev1ZrrSYm/WjQSOmABU9cJ4g6jqLvd7rYg8BZwOhEwAqvoA8ABAdXV1FnSkMia7BGpsq0bGV/8PzkAwq/5xlBZ5OgfGZYukVwGJSKmIlAceA3NxGo+NMWlQWV7CcUN9nD819kVgAhr7WA4y3zjrAmdXCSDebqBXiEgNMBN4XkRecrePEpEX3N0qgWUi8h7wFvC8qr4YT1xjTOwG+Qp57Rvnc9KYwXG/V3Nb8paDzDalxZ7cawPoi6o+BTwVYvtu4GL38VYgvvlgjTFpd+Wpo3nynV3dtiV7NbBsko1tADYS2BjTL6EWjWmyKqBO1gZgjMkrTVYF1CkwEKyjo3vflUzuH2UJwBgTM6sC6tK5LKQ7OE6zYDY4SwDGmJg1tfpzeh6gaHROCJdFo4EtARhjYtbUZiWAgM4pobNoPiBLAMaYmDW1+nNyOchYdC4KYyUAY0yu6+hQmtqsCiggUAVkCcAYk/Oa23N/KuhoZOOiMJYAjDExCawFYOMAHKV9rAucqSwBGGNiErjTtXEADl9nLyArARhjclxzjq8HHK1ACaDe2gCMMbmu0aqAugn0hsqm6SAsARhjYmJVQN0VeQso8hTYOABjTO4LVAFZCaCLr9jTayRwJi+ZbgnAGBOTQAnABoJ1KS3yWgnAGJP7AnXd1gjcxVfk6RwIlvlTwVkCMMbEKFAFZCOBu5QWWwnAGJMHuqqALAEElIZoA8hklgCMMTFpshJAL758agMQkV+IyAYReV9EnhKRkKtMi8hFIrJRRDaLyLfjiWmMyQxNrX6KvQV4CjK4m0uKlQa1AWSDeEsAi4ATVPUk4APgOz13EBEP8Gvgk0AV8FkRqYozrjEmzWw1sN5Ki735MxBMVReqauBsVwBjQux2OrBZVbeqaivwOHB5PHGNMenX1GYLwvdUWuylIU/nAroZ+FuI7aOBnUHPa9xtxpgs1tRqC8L35Cvy0NTmx9+RDZ1AIeIIDhF5GRgR4qU7VPUZd587gHbgsXgPSETmA/MBxo4dG+/bGWOSpKnNEkBPpVk2H1DEBKCqF/b1uojcBMwDZqtqqLS3Czg26PkYd1u4eA8ADwBUV1dnRxo1Jg81trbjK7RRwMGybVGYeHsBXQR8E7hMVRvD7PY2MElExotIEXAt8Gw8cY0x6WdVQL2VFvdeF1jI3F5S8bYB3AuUA4tE5F0RuQ9AREaJyAsAbiPxV4GXgPXAX1R1bZxxjTFpZo3AvXVNCZ0dJYC4ym+qOjHM9t3AxUHPXwBeiCeWMSazWDfQ3rJtURgbCWyMiUlzm58SSwDddC4L2dpOyBbRDGMJwBgTk8ZWPz6rAuqmrLMNIDuqgCwBGGP6JbgpU1VparMqoJ6ybVlISwDGmKi1tHegilUB9RAYB1BvJQBjTK7qnAraqoC68blVQNkyJbQlAGNM1AJTQds4gO4KPQUUebNnYXhLAMaYqDW5ddwDbD3gXkqLPNYGYIzJXVYFFJ6vKHtmBLUEYIyJWlOrVQGFU1qcPYvCWAIwxkSt0doAwnIWhg9KAJk7FZAlAGNM9JoDJQCrAuqltMibNXMBWQIwxkStsw3ASgC9+LJoXWBLAMaYqFkVUHi9qoAymCUAY0zUrAoovNJiD40tfrJgLjhLAMaY6DVaAgirtMhKAMaYHNbU5qfIU4DXY5eQnnxFXprbOujIgoXh7a9njIlaU2u71f+H0bksZBaUAiwBGGOiZquBhZdNy0JaAjDGRM3WAw4v1MLwmSqumZxE5BfApUArsAX4vKoeCrHfNuAo4AfaVbU6nrjGmPRqavVbFVAYpXlUAlgEnKCqJwEfAN/pY9/zVXWGXfyNyX5WAggvsCZANiwMH1cCUNWFqho4yxXAmPgPyRiT6RqtBBBWaRYtC5nINoCbgb+FeU2BhSKySkTmJzCmMSYNmqwROKzSYicBBKaElgyeDC5iG4CIvAyMCPHSHar6jLvPHUA78FiYtzlbVXeJSAWwSEQ2qOrrYeLNB+YDjB07th+nYIxJNasCCi/QCJwNJYCICUBVL+zrdRG5CZgHzFbVkCMfVHWX+71WRJ4CTgdCJgBVfQB4AKC6ujrzR1IYk4ecKiBbDSyUQDfQbFgUJq4qIBG5CPgmcJmqNobZp1REygOPgbnAmnjiGmPSq9lKAGGVFuXPQLB7gXKcap13ReQ+ABEZJSIvuPtUAstE5D3gLeB5VX0xzrjGmDRRVRpb260NIAyvp4BibwGNWVACiKsMp6oTw2zfDVzsPt4KnBxPHGNM5mj1d9ChNhV0X0qLvRxoaE33YURkI4GNMVFpsplAI8qW0pElAGNMVGw1sMhKs6SB3BKAMSYqzbYaWESBrqCZzhKAMSYqthhMZIHBYJnOEoAxJipdVUDZcZFLh2ypHrMEYIyJSlcVkF0+wrE2AGNMTuqqAsqOi1w6+ILaADJ4KiBLAMaY6DRZI3BE1gZgjMlJTe4UB9lSz50OVgVkjMlJnVVAlgDCypbkaAnAGBOVziog6wYallUBGWNyUlOrn0KPUOixy0c4lgCMMTmpqc1Pid3996nUqoCMMbmo0ZaDjChbBslZAjDGRMVZDzg7LnDpYnMBGWNyklUBRWZtAMaYnGSrgUVm4wCMMTmpqa3DuoBG4LMqIGNMLmpqbbdBYBH4ghKkSObOBhR3AhCRH4nI++6i8AtFZFSY/W4UkU3u143xxjXGpIf1AorM6ymgpDDz768TcYS/UNWTVHUG8BzwvZ47iMgxwF3Ax4HTgbtEZEhvzDHzAAATWklEQVQCYhtjUqy5zW9VQP2QDe0AcScAVT0S9LQU0BC7fQJYpKoHVPUgsAi4KN7YxpjUa2z1WxVQP2RDO0BCUpSI/AS4ATgMnB9il9HAzqDnNe42Y0yWabISQL/kTAlARF4WkTUhvi4HUNU7VPVY4DHgq/EckIjMF5GVIrKyrq4unrcyxiSBavbMdplO2fA76leKUtUL+/l+jwEv4NT3B9sFzAp6PgZ4NUysB4AHAKqrq0NVJxlj0mxAFtzdpls2DAZLRC+gSUFPLwc2hNjtJWCuiAxxG3/nutuMMVnIqoAiy4YqoEQc4d0iMgXoALYDXwIQkWrgS6p6i6oeEJEfAW+7P/NDVT2QgNjGmDTIhuqNdMuLRmBVvSrM9pXALUHPfwf8Lt54xpj0s7mAIsuGEkDmj1QwxmQcKwFElhdtAMaY/GMJILJsWBTGEoAxJmpWBRTZiWMGMX3UQEq8mXuZzfwyijEm41gJILJZUyqYNaUi3YfRp8xNTcaYjGVTQeQGSwDGmKj5Cq3yIBdYAjDGRM1KALnBEoAxJiqeAqHQk7mLnJj+swRgjImKr9CT0atcmf6zBGCMiUqJVf/kDEsAxpioWBfQ3GEJwBgTFZsJNHdYAjDGRMV6AOUOSwDGmKhYFVDusARgjImKVQHlDksAxpio2HKQucMSgDEmKj4rAeQMSwDGmKhYI3DusARgjImKJYDcEVdlnrvQ++U4C8LXAjep6u4Q+/mB1e7THap6WTxxjTHpY43AuSPeEsAvVPUkVZ0BPAd8L8x+Tao6w/2yi78xWcy6geaOuBKAqh4JeloKaHyHY4zJdFYFlDvi7s8lIj8BbgAOA+eH2a1ERFYC7cDdqvp0vHGNMelhVUC5I2IJQEReFpE1Ib4uB1DVO1T1WOAx4Kth3uY4Va0GrgP+XUQm9BFvvoisFJGVdXV1MZySMSaZrAood0QsAajqhf18r8eAF4C7QrzHLvf7VhF5FTgF2BIm3gPAAwDV1dW9qpTa2tqoqamhubm5n4eVXUpKShgzZgyFhYXpPhRjQiqxEkDOiLcX0CRV3eQ+vRzYEGKfIUCjqraIyDDgLODnscasqamhvLyccePG5dyiFKrK/v37qampYfz48ek+HGNC8tlI4JwRby+gu93qoPeBucDtACJSLSIPuftMA1aKyHvAEpw2gHWxBmxubmbo0KE5d/EHEBGGDh2as6UbkxusCih3xJXKVfWqMNtXAre4j5cDJ8YTp6dcvPgH5PK5mdxgVUC5w0YCG2OiYiWA3GEJIEZPP/00IsKGDV3NHh988AEXX3wxkyZN4tRTT+Waa65h7969vPrqq8ybN6/bz99000088cQTqT5sY+Jm3UBzhyWAGC1YsICzzz6bBQsWAE7bxCWXXMKXv/xlNm3axDvvvMNXvvIVrCuryRUFBU71pA0Eyx2WAGJQX1/PsmXL+O1vf8vjjz8OwJ/+9CdmzpzJpZde2rnfrFmzOOGEE9J1mMYk1KUnjeKnV5xobQA5JKv7c/3gf9aybveRyDtGoWrUQO66dHqf+zzzzDNcdNFFTJ48maFDh7Jq1SrWrFnDaaedFvZnli5dyowZMzqf79ixo1e1kDGZbOxQH9cNHZvuwzAJlNUJIF0WLFjA7bffDsC1117bWQ3Ul3POOYfnnnuu8/lNN92UrMMzxph+yeoEEOlOPRkOHDjA4sWLWb16NSKC3+9HRLjrrrt47bXXUn48xhgTK2sDiNITTzzB9ddfz/bt29m2bRs7d+5k/PjxTJw4keXLl/P888937vv666+zZs2aNB6tMcaEZwkgSgsWLOCKK67otu2qq67i8ccf57nnnuOee+5h0qRJVFVV8Zvf/Ibhw4en6UiNMaZvWV0FlA5Llizpte22227rfPziiy/2er2yspJZs2Z12/bwww8n+tCMMSYqVgIwxmSsj48/Jt2HkNOsBGCMyUhbf3oxNjVWcmVlCUA1d1eezOVzMyYaBQVikyMmWdYlgJKSEvbv35+TF8rAegAlJSXpPhRjTB7IuiqgMWPGUFNTk7Nz7ARWBDPGmGTLugRQWFhoq2UZY0wCZF0VkDHGmMSwBGCMMXnKEoAxxuQpyeTeNCJSB2xP0NsNA/Yl6L0srsXNhNgW1+KGcpyq9msOmoxOAIkkIitVtdriWtxciW1xLW68rArIGGPylCUAY4zJU/mUAB6wuBY3x2JbXIsbl7xpAzDGGNNdPpUAjDHGBMmpBCBpmjowXXFN7kvHZyvfPs/5dr7BcioBEDS3UYr/qIPdmCmdW0lEpohIyv+GInKBiIxIQ9zrRORk93HK/r4iMjjocaovFun4H+2cjjZPLo5F6T6AdMmJBCAiF4nIS8AvReQKAE1B44aIDHLjvujGbE92TDfuHBH5O3ALKfwbisiZIrIWuAkoS2HcC0VkKfDvwCmQsr/vJ0XkNeDXIvKdVMV1Y18iIs8BPxKRs1IUc66ILAfuFZHPQUrP91Mico+IpGwJMBG5WEReBP5DRK5PVVw39qdE5EepjBmSqmblFyA4mfuXwBvAZcBXgD8Bk1J0DEXAn4EG4Gp3myeJ51sI/BDYBFzZ8/Ukn6sH+D1wXQr/vgOAvwCvAp8AfgN8JZm/56D4pwN/dz9X5wF/BU5I0bmfBrwFXAxci9Mb5Cb3tYIkxRwOrAA+BVwAPAt8J5kxg/7OVwLrgRrgqmTGc2N6gX8F3gYuAj4HLAAuTXJccf+PbgE2A23AOan4TIX7ytoSgDpace6+z1PVZ4HlOL/UD5MdX0Q8wBCcf5rPAPe4x+VPRrHZPd82oAN4QlWfdI/jHBEpTHS8EAbifIBfEJEiEbleRCaKSJF7HAk9Z/d8m4DHVHWWqr6E8/e93n3dn8h4IZwFvO5+rnYCfmBLoMotyVUjFwJLVfUF4BngI+A2ERmkqh2Jju2+XyXwnqo+raqLgW8D3xCRYcmIGaDOlXErcDZwO/BPQFIXxFCnpL4VuFZVX8RJdrtJclWQ+5n241z8T8G5YU1rKSDrEoCI3CYiD4rILQCq+rKqtovIxcCTwBTgpyLyGXf/hHxwg+LeLCLi/iGPAJeo6nPA+yLyPRE5QVU1CXHnu5vuA0aKyO9FZDXwTeC3wM3u/omO+wV3UwFwPHASzt3wpcBPgfsDP5LguF8EUNVn3O0enMS+VkSOTUSsvuICLwPXicg9wOvAKOC/gB+kIPYS4FIRGeImwTbgMPAtSEy1jIjcKCJzgt6vHjgzUAWjqutwSl/3xBurr9iuNaq6X1X/G+dcrwzcWCQx5pPAhyJSqKpHcZKOL5Exg2J3u2YBr6nqUVV9ECgN/I+loz0vbUWPWL5w6p5X4BTbXsMpxk10XzsdmOw+/iTwEjAuiXEnABXAj919bgbagZXu88IkxL0Tp9TxKeAxYCrOhfdy4HlgbJLO97s41TF3A1uAz7j7lQF1QHUSf8/HB71+Ik6xvTzJn6vv4jTsDwF+hVs1AEwD1gDTkxj7DvdzdQ/wHLAUp+otUAVWGme8IcATwB7gfYKq0oBHgEd77Pt3YHyCzjVkbJybi8CYpLOAV4BTe/xsTFWcfcUM2qcEeBqYksjPVZi/73eACUGvfxJYCwxJdOz+fGVbCWA28G/qFNv+D06RLdBY9ZaqfuDutx7nwpSoRtmecYuBq4Em4JMishC4DVhM1+yliYgdKu6tqvo0MF9VN6jzKXofOIRz95QIoeJ+BfgeUIrbAKyq9cDjOP9kyYhbhFMlgBtvNdCMUy+eSD3jFgJfU9WDwGS6/qYbgDdxfh/Jil0C3KCqX8P5nf9QVT+Pc94DVLUhnmDuOS3ESWarcP6mAV8FLhKRj7nPG4D3gNZ4YvYntvs5RlXfAN7F+b+aGij5Bl5PZMwgQ4ASVd0oIseKyFWxxAoj1N/3c0HH9zec69V8ESkXkasTGDuirEgAQUWjfwDzAFR1JU5mHRWil8RNOMW5/UmK+yZOdcjZwCLgLVWdoapzgVkiMj7WD2yEuG8A40XkrB4Xghtx7tAPxhozQtxlwHRgJE6V0ydE5FIRuRPnjm19kuKuAEaLyNnufoJTsitJRFVXH3GXA8eJSBVOUn9IRHw4JbATcBorkxX7DWCyiJyjqjtUdZG73yU4pa94YgZ+Z4+o6iGcEsWVInKcG/8IThXXd0XkRpzznY5TPRSXvmKr08bgCfqd/DvOnfJrOKWhmKo2+xEz0G37eKBcRP43TntAv6ZSjhC7r2vH6B7XrG8BP8Pp3JHS7tUZmQBEZLqIdPZFVtUO9+EbQIGInOs+X4PTeDPK/bkbRGQNMB74sjr1p8mIuxbnIlAOfE9V7wx6m7GqGlUjdJTnu4eu871KRN7D+QB/WVWbkxh3J3Caqj6C0w5xNjAWmKeqUV0QY/j7jnT3U5wLQkMsCTbKuDXAVFX9FbARpxqhCqf3VW2SY+/GvRCIyLnidEWdhPN7jydm4C672f3+NvA34CdB+9yLcwE+DTgOp3fb4WjixhJbVf3uRbkSuBcn8c5Q1R8H/3yCYwZK6acCM4GJOG16Uf2e3dhniciEoNj9/R+eiJOYnsap9kp4m0uf0lHvFO4Lp4FxGfAUMDpoe4H7/Rjg68Cv6arL+y/gm+7jGcCZKYp7H/AN97GHGLquJeB8TwRmpjDut3rum6K43wjatyiFcQPdIIuAwWn6TI8lyjaHPmJKz7+b+/4rcO70K+lqU4upm20csYfj3Lh5iLItK87zHYpTqoupOyZO8lgItBDUbtHfz7R73inpth7qK9NKAHfidHG8QlV3gdP7Q7uy6VGcRrFinEFfhTj1d/sAVPVdVV2eoriDcauY1L17ScP5rlbVN1MYty7wBik+386qPHW6/qYq7t5ATHWqEGIR7994h6quTVBMVecue4CIBNpxduBcOFfjVLkMdLfH2s021thLcRpC/e72VMR8HWf1rDWqujSagCJSKCL344zR+E+cqslZQbH79ZlW1TpV3RTl+SZOujJP8BddXQx/F7RtDs5F1us+/zFO98OpOFUCD+Nk8vuJ/W7F4lrchMdNV+x+xvwRThfIk9znn8Vp5P45cfRcS0fsNJ9vGU5j7gD3+U3Ag4G47rYfJOOzlciv9AWGM3C7bbrPB+I0gszDqQ97Cadb2neAcTgjfCf2+ONH3R3Q4lrcZMRNV+wExDyDGLt5piN2ppwvPbqlAl8A7gu8hlMt9Se6d/mM+bOVrK/UB3Sy8/M4RaM7CerXjNPv+x3gMvf5uTgjIWcG7RPTMHGLa3GTETddsRMQM57STcpjZ+L5EtTGgNOAvBe3Pz9BCSKez1ayv9LRBlCKk6W/5j4+N+i153CydmBCqJU4w+CbwelapbHVPVtci5usuOmKHW/MeKbSSEfsjDtfdXS4XT63ufucF3gtKHY8n63kSkWWAW7A+cUMdJ+X4PTTvwv4Pt1b7r+AM9pzGDAfp092TCNcLa7FTUbcdMW2882o8x3lbg+MYC7FqXq6KHh7pn8lbUlIdxDGCJx6sA6cQSylwO2qus/d5yzgGpzpEx4N+tl/wWncmQT8szrzklhci5u2uOmKbeebsef7tqr+0d3mUWcSyD8Cm1X1+9HETatkZBW6+rtOBv4Y2IYzv8mTPfb9Z5zeEIMIaiAhtl4BFtfiJjxuumLb+WbF+fqCtkc9RiXdXwltAxBnOPdPcWbjPA9nZk4/dPYrvh1nxsHzgn7sQZwuVYuAzSIyyt2/3/PaWFyLm4y46Ypt55tV5/thUOyEzJmUUonKJDj1Ze/ijHL7Is4gi4uAHcDpQft9CVgS9PwzOJNNPQhUWFyLmwlx0xXbzje3zzfTvhL3RnAOcH3Q898AX8YZILHK3VaAU8f2F9ypmnGmMj7X4lrcTIqbrth2vrl9vpn2lbg3clrIi+mqS/sc8DP38bs40+sCVAMLLK7FzeS46Ypt55vb55tpXwlrA1DVRlVt0a7+tnPomjvm88A0cRa5XoAzaCMhq1dZXIubjLjpim3nm9vnm3ESnVFwZ8bEmXY1MLPgRJzRdGcT1HfX4lrcTI+brth2vrl9vpnylYyRwB04KyrtA05yM+h3gQ5VXabubH0W1+JmSdx0xbbzze3zzQxJyqhn4PxSlwFfSFU2s7gWN5di2/nm9vlmwldSRgKLyBjgeuBXqtqS8AAW1+KmMG66Ytv5pk46Y6dT0qaCMMYYk9kybUUwY4wxKWIJwBhj8pQlAGOMyVOWAIwxJk9ZAjDGmDzlTfcBGJMJRGQo8Ir7dATOlMCBaQEaVfXMtByYMUlk3UCN6UFEvg/Uq+ov030sxiSTVQEZE4GI1LvfZ4nIayLyjIhsFZG7ReRzIvKWiKwWkQnufsNF5L9F5G3366z0noExoVkCMCY6J+MsEDINZ+ToZFU9HXgI+Jq7z38A/09VPwZc5b5mTMaxNgBjovO2qu4BEJEtwEJ3+2rgfPfxhUBV0MzBA0WkTFXrU3qkxkRgCcCY6ATPE9MR9LyDrv+nAuAMVW1O5YEZEy2rAjIm8RbSVR2EiMxI47EYE5YlAGMS7zagWkTeF5F1OG0GxmQc6wZqjDF5ykoAxhiTpywBGGNMnrIEYIwxecoSgDHG5ClLAMYYk6csARhjTJ6yBGCMMXnKEoAxxuSp/w+wLfaZ3nCE8QAAAABJRU5ErkJggg=="
},
"execution_count": 91,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"Fridays = df3[df3['Day'] == 'Friday']\n",
"Fridays.set_index('Time',inplace=True)\n",
"Fridays.plot()"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 92,
"metadata": {
},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEICAYAAABLdt/UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJztnXeYFFXWxt/T3TM9eWBgiDMwgyRhyBnJoqKgiDmLuMZVTKy7ptX9dF13F1ZXFF0Mi7sqBlRwQVHJSZAgSUByHjIzzDBM7Pv9UVU91T0dqruru6qa83ueeaCrqqvO7ap669S5555LQggwDMMw8YPNaAMYhmEYfWFhZxiGiTNY2BmGYeIMFnaGYZg4g4WdYRgmzmBhZxiGiTNY2BmGYeIMFnaGYZg4g4WdYRgmznAYcdCGDRuKvLw8Iw7NMAxjWdauXXtCCJEdbDtDhD0vLw9r1qwx4tAMwzCWhYj2admOQzEMwzBxBgs7wzBMnMHCzjAME2ewsDMMw8QZLOwMwzBxBgs7wzBMnBEXwl5d48KCbUfhazao/SfLcOBUmQFWMfFEdY3L5/VldcqrarDhQFGd5aUV1Vix84QBFvnH5bL271/jEjh6pjwmx7KUsJeUV2HTweI6ywf/fRHGTVuD/Ke+qbNu3AerMejvC3Hn+z/hhy1HUROji+PomXLM33pU8/blVTU4VhL5ST9WUo6Of5yLzYfq/k5M+LR+5lu88PUvUdl3cVkVPlt9wOe6kvKqqBxT4bmZmzH6zeU4VHTOY/lt767CLe+u0uWa9MeBU2V1xHrzoWLk/WEOrvjnUtzw9o8YN201Hp7+M+58/ye0evob/OXbrSitqHZvX1ZZjRGvLcGOoyVRszNUjp0px9zNR3DgVJmHM/DavO3o8/L8mIi7pYS90wvf48o3lqGy2uWx3PuiVFNaXo2WWSnYduQM7vnPGgz86wJMnr8jqhcsAFwzZQXu/qDuIKy3Fu3C/zYcrrP83v+uRe8/z4/4uN9uOoKzlTV4a9GuiPfFePLBj5rGhqCy2oU/z9mC4nOeorzo12O4+s3ldZyLCTM24MkvNmJr4Zk623d64Xus3H0yMsMDsFF2lLwfIOtlL76iyvNeq6x26fKw2XmsFAP/thBvLa69ToUQGDV5GQBgS+EZEEmOyuZDxVi8/TgA4F+Ld6P7iz/gNx+swYy1B/Hi7C3YdqQEl7y6JGKbQuWpLzfi8U/X11k+ZdEu3P/hWgz820L0eGke7vr3T3ht3nZMXrATAHDsTEXUbTNk5GmkBPK6K6tdSHTUPq8EBPq2aoAXry7A/K1H8eHK/Zj0w3b8c/4OXNaxCW7t2wL9WjUAEelqo7+HzV/nbgMAFDTPRH7DVPfyJfKFGynPy17lnE2FeFOXPTKhhmC+3nAY7yzdg7OVNXh5TCf38sc/24BTZytxuqwSDdOc7uXHZA+uvKrGYz+r956S/t1zCn1bNfBYt+NoCfacOItLOzbRZNPWwjNo3yTd73Wu5U12zd5TuO7tH6Xj//lyJNjD9wuV+2Pl7pP47dDWAIDlO2sfYHYb4dP7+rk/vzR7C95dtgeXdGiMnPrJ+G7zEcwL4Y1Yb3YfL8X0n6S3rH/c2NVjXUW1CxlJDvxuRHtsPFCEDQeLsEh1f9fEIKRnSWEPxPajJShonun+7BIAESHBbsOIgqYYUdAUu4+X4uNV+/H52oOYs6kQF2Sn4tY+LXFtjxxkJifExM7ConMewq4HZ1WvqIx+hHof1rgkL7e6xtPbVSTVe3/Vsqg6bDav7aVveHv+ANwe6t5XRga1Z8fRElz+z6V4aGhrTLisnce6humJ+PUo8OzMzfjsvn4+xbqiugb/+GE7pi7ZrdpnKTo0ywh67FB4fcEO9//9PWh652XhnkGt8MdRHbDxYDFGv7lcVxu0UlIe+F5LSrDj9r4tgb4tAUh9FgXPfwdA20M0UiwVilEQ8P/DbPKKLQshYPNyUlplp+HZUR2w6umLMfH6LkhPSsD/zd6CPi/Pw5MzNmDjwbqdSXpTrTq5e0+c1WWfH63SFipgQiPc29A7ZKg4y97X76mzlQCAtCRPP2vHMSlu/O6yPX6PsWzHCcxafwj/Xr4Hk77/FU9/tQnfbir02Ea51ub+cqTO9xUv+ef9RXj0k/V1Hka/HD6D0W8sx78W78ZNvVq4lwe6B8Nh1e6T+GnPKc3bExG65NbzePOJJfVSQnMA05y159b7N44GlvLYr+nWHF/+fAi2AGGTTYeKcbPqs0vA7/ZJCXZc1yMH1/XIweZDxfho1T7M/PkwPltzEJ1zMnFbn5a4skszJCfadW6J9DpWWlGNNxbsxPsBblytlFfV4J2lke+HqUuooZjDRVJoZeb6w3jtpm6qNW5l96CwuFy91s25quACcNt7q9z/t5EkeNsKz+DyTk3dy+3eno0P7h98Ad5evAtOhw0Tr+9Su/zDtchOd+LfY3thaPtGmP7TfqkJOjudkxfsRMM0J06UhhZ/zkpNwInSCjgdsfVRSXW2hBBeIa7AP051DDx2Swl7iwYpQbfxzppxCQEt4fOC5pn4yzWd8dQVF+KrdYfw4cp9ePKLjXhpzhZc2yMHt/ZpidaN0sI1vQ5frz+M38/YiGMlFbi2ew6IgFnrD2n+/s5jpfjr3G1445ZucDrs+HzNARwviX6nzPlIqLehr9AJoPbYNR43gHqO7NwUczYW4rP7+iErNRENUhORmZyAsdNW44yf4+88VurxWR26+83AfKQm2jHph+1wJtSK5GUdG+OVazqjfmqix3eLyvTL1lm3/zSW7TyBp69oj5e/2RbSdxWnzRXjVFT1G0tFtQtJCdqdP+VBHk0sFYp5W+5Bb//cXDz08Tq8uXAnFm475rHNtiNnUFFd2wklAnjsvshISsCd/fPw/WOD8Om9fTG4XSN8uHIfhv9jMW6euhJzNhaiKsxXKfWN+tXPh9C0XjK+erA/Jt3QBY3SQ3ulfPqrTfhhy1H8vL8IVTUuvL14N7q3qOexjdXzfs2CP9GornFhxtqDdX7n3X5Ca/5i7AreWTFqvEU+I8mB7HQneudnoXWjNNRPTYTNRrCRdpErLPbs4H/44jb47dAL3J2CAPDGLd3riDoAPPbZ+jqhpnCZPH8H6qck4NY+LUP+rvI2UlUj8NaiXbrZFAz1T+wr3h5IcsLVj1CwlLC3yJI89tysZKw/UIS/f/cr7pq22mObqhqBX4/U5rRq9di9ISL0adUAk2/uhhV/uBi/u6wd9p8qw28/Xof+ryzApO9/xeEAaZa+UHs5j1/SFl890B/dWtQP3TgVQgAzfz6EQ0Xn8NCw1h7rrp6yHOv2n45o/4x/pq3Yiwmfb8AnXjno/jKcfMXY1R1pD3y0zmN7tXhc9MoCPDtzExZuO+bOnvF1Wfta5k/nfXmOEy5th7sH5Pv+AuDu8D9eUoGXv9nqdzutbD5UjIW/HsdvBrZCqjP0AIIi7E0ykvDXudtwxetLYzKwSv2Thpq0MLJz0+AbRYilQjGK5/32bT3QsVkmis9VYVvhGdw4daXHdhsPFqNzjuS9huqx+yI73YnfDm2N+wdfgMXbj+G/P+7DGwt34s2FOzGsfWPc1rcFBrXJhi1ILPPk2dpQyXU9cupsH8rbpPJNlxCYsmgXOjTNwNB2jTy2OXqmHNdMWYFru+fg95e3Q6P0JO0HYNz4Oy8n5U7P02WVqm39n0QlLqveJNB4CvV+C5pn4st1h/Dhyv1ISrChXEP8PRiFRbXHVq4nIsKzIy/Ee376fRzyNTuwTUNMW7EX3VrUw+iuzcO24XRZFTKSHLijX2Bv3V/Hs3JvT7mtO4rKKvHC11twy7urcGWXZnh25IVonBGda159nku9hN0MA5QtJexKB4Xyw2UmJ6CPV35v/ZQEjzi7SwifXkw42G2EYe0bY1j7xjhwqgzTf9qPz9YcwLytR9EiKwW39GmB63vkoIGfnvpjAWLg4T57vtlUiD0nzmLKrd3r5CgveGII3li4E+8t3YPvfjmC8Re3xtj++R55/kxwzvgZkOPrBl65239mh3J61KES77e+orJK/G/DYXy+9iB+OVwbmpl6R09UVNdg1e5TWLDtGKat2Ku9AX44XOz7jTPQmA5l1e9HtEd51S/4wxebcGHTDLRtnF5n2xqXwDtLd2PZjhN4546efpMQ7rooH+lJ4aUZKx67yyUwrH1j9L+gId5evAtTFu3Cgq1H8dglbXFn/7yIcu59EcxjpwCqo++IGd9Y6g7X8oN0yqmHjaqURyEQ1JMOh9ysFDw5oj1W/OFivH5zNzTJTMIr325Dv78swKOf/OzzOydKK30uD8TB02V4a9GuOp6gcoN9tGo/LshOxQgfA1VSnQ78fkR7fPfYIPTJz8LL32zDiH8ucY/iY7TxSpAOPbUOTlvhPzPJV4z9UJGnx977z/Px3KxfUFntQvsmnmLpdNgxqG02Xriqoya7g1FYFHonnmJ7gt2GN2/pjrQkB+7/79o6o1F3HivBtW+twCvfbsOynSfcqZu+GHeR/9BPMOzyj6+EtJIS7Hh0eFv88Ngg9M7PwktztmLU68uwKoqjd89Wmm/8iKWEXQudm2di+9ESdxwy3Bi7VhIdNlzVpRk+u68fvn9sEG7unYv5W2s7dNWCHE7Wyg9bjuKvc7cFfCg8OKR1wIdXfsNUvDe2F/49theEAO58/yf85oM12H+Si6Np4ZzXiFAFpRNMOcUHT5fhhy3+R0OSjwwOb4/9lj4tMPvhAfj2kYERCZ4afznnhRHULCECGmUk4c1bumPfqTL87vONEEKgxiXw9uJduOL1Zdh38izGX9wGAHDglGc7lfTEnPrJyFTlhDtCdMKUe9t7NGfLBql4f2wvTL29B0orqnHj1JV4/NP1umWOBeo8NUMoJiJhJ6LriegXInIRUU+9jPJ/POnfQD9cp5xM1LiEO8NAjxi7Vto2TsefRhdg5dMX+1yvztH1ZZKvZiltLQvgFVzVtZkm+4a2b4S5jw7EHy5vjx93ncDwVxdj4ne/Btw345vSimp3HLqV3KH435XSALGh7QJPIq/uMPUW9heu6oiC5pkgoqg6JIA0+jlSeudn4anL22PuL0fw5zlb3V760HbZ+P6xwbhnoPRw2u9VYTVbzgJ7dHhbj+Xtm9YN6QSiNhRTdx0R4dKOTTDv8cF4aGhrzN5YiGETF2Ha8j06DBKqPYdnK3w/+I0kUo99M4BrAMSkAo+/DhQ1nXOkcgLKCFSXj5Gn0cZf734gbyFQTA6oe/Gs2y+Njh3ZqWlI8UOnw477B1+ABROGYGSnpnhj4U5cPGkxvt5wOC7L0kYDl0vg0U9qiz9lpSbiXGUNPl19AJd1bILm9ZN9fq82xl67LFBmld71i7zRK5/67gH5uKJTE7y7bA/2nTyL12/uhrdv64HsdCfSkxJQPyUBB077fjtMsIfWRu9LVBH2QPVXkhPtmHBZO8x9dCC6tqiHF/63BVe9sRxr94WfMaY+nM8Ye4BmRfu8AhEKuxBiqxDiV72MCYavrAJvmmQkoWFaortqndR5GmNl94PaYw+1M8fbq1bydXvlhZcu2TgjCa/e2BUz7pcGuIyf/jNunLoSWw77z6VmJCb98CvmbT2KSzs0BiD5brPWH0JRWRXG9s9DOx8diYD6jbP2AvaOsXtsH6Z9Wp7PZ8qr6mRzhAsR4W/XdcEfR3XA948NxlVdmnmIV25WSp05ERQbvUVuUBvpbadxhmcCgj8xDGWAUqvsNPxnXG9MubU7TpdV4tq3VuDJGRtwMsTRroDn27Vev6OeWCrGruVBR0To1DzTnRkjgJh77P5Qe+yh1rg4Wxmd172eeVn4+qEBeHlMJ+w4WoJRk5fiuZmbUVQWekdvvKLWjFnrD+HNhbtwU69cjO2fB0AqPDdtxV60b5KO3vlZfkVIcTBqvGLs9f3UHbGFcXdq9QaP6Dz6Mc3pwLgB+e4Qi5rc+ik4eFpb2KdjM+mNu0dLT4fF3fHstb06K0YLRIQrOjXFvMcH477BrfDlukMYNmkxPly5L6TiXOprok66o851dMIh6KVDRPOIaLOPv9GhHIiI7iWiNUS05vjx6GRl9G2VBUDKjNlxrARlldUQIjavPloI1nHjKxSidNyVRdErsNsIt/RpgUUThuKOfnn4aNU+DJm4KOSL/XzgyRkb0SuvPv5vdIE7pPLHWb9g25ES3HVRnqZUQSUeXFpRjeJzVWiS6Sd0o9Obpi9n1jsEFM17JCcrGYdOn4vKSGjFYw+1/kqq04GnLr8Qcx8diA5NM/DszM0YM2W5z9mkgmHGqqpBhV0IMVwIUeDjb1YoBxJCTBVC9BRC9MzODty5FHRffpYPbisN0OncPBMuAWw+JIUVYtV5GgiXS7gHtPjCn4nKhBn+6o/oSWZKAl64qiO+eWQg2jdJx7MzN2PU5GUhVd2LR9TnpmGaE2/d1qPOWIB6KQnugTrBLjclbKB0Xjav53sQTagVBEMhFvVKFHLrp6CyxoWjkUxu4ydxQolohts/1LpROj6+pw/+eVNXHCkux9VTluPprzbhdIB7FfD0yn2FYgJdApzH7kVtHrDnSVRex+66KA+AlBkDwP30NUMo5nRZZVjer3LRxDKO175JBqbf0xdv3tIdxWWVuOFfP2L89J91f323CurLbeodPdxhNLWA39SrhbsQlD+N8Y4HK5NNNPXjsetd71xNYdG5sO6LcORTKQXimV4r7cnbBOFe7ts47zCHu/M0giQXIsLors0x/4nBGHdRPj5dfQDDJi3Cp6v3+33LCNZ5ajSRpjuOIaKDAPoBmENE3+ljlt8DAqh7cf17bC8Mv7CROze2cUYSGmc4sV6uq24Ch13T4CTvdqk7TGOdUkVEGNm5KeY9MRjjh7XG3F+OYNikRXhz4U6PImvnG0oM2JvbgwyJV6NohVLet0mmn2HvUYyCFRaXR1RiIpRbKlcW9gMa4+y+j+f7iHfJuf7hJhGoSU9KwHOjOmDO+AFo0ygdv/9iE659e4XP+YMDxthNEL2MNCvmKyFEjhDCKYRoLIS4TC/DfOGvOt6gttl4985eHnHCTs3ruSfMMEOMPZyBEep0LK255q2y9Z2VKSXRgccvbYf5jw/GgNYN8ffvfsWlry7B/K1HOT1SRfN6vr1uNXvkqo+Kx3646BzsNvLZ4RhtCovL0dRPCEhvmtVLAhHqZMaEgr8xLL3ysrD3lZFopGNNmPZNMvDpfX3xjxu64MCpMlz1xjI8P2uzRzjUMxRjPkfHWqEYtz4HF5TOOZnu0W5GxtiVC1FJdWyRleIOGQVjlaruiLdXoGRkeNfKiRa5WSmYekdP/GdcbzhshLs/WIO7pq3G7uOlwb8c52h5mKofzMrr/eGic2iSkaT79ekdrvDZeVp8Dk39vSnojNNhR5OMJI9c9tp0R89t3bYa7IsREa7pnoP5TwzB7X1b4r8r9+HiSYvwxdqDEEJoyGMP3okeTawl7PK/WhzFTqp5T80QY1c89tnjB+D5K+vW+vBlonp2eu+Lp0NTKf6a4T1Ha5Sd6EFtszH30UF4duSFWLP3NC57bQn+8u1WU+by6kWw9LUmGrxF9UNaCcUcKjqH5vWS/b/5hFNuWsM2QggUFpV7xPajXcc8t34KDp6KfKRrrMlMTsCfRhfg64cGIDcrBU98vgE3/OtHj9LgcRdjjzWhhFQKPITdeGU/Lk/flR6g5rT6/j5XWYMNqrlXo5XHHg4Jdht+M7AVFkwYjKu7Nse/Fu/G0ImL8OW6upNOxAN6pB0u2VGb4usOxRSfQ7N6STHPej5zrhrnqmo8PPZoT/6Qk5Vcp6yAL0zisNehoHkmvri/P/52bWfsOn4WT3y+wb2ubh678VhK2BW0/HDZ6U40ky9cE+g6TpRUoGGaU/PDad3+06iqqW2pGeu5NEpPwt+v74KZv70Izeol4/HPNuC6t1fUmZ7Q6ugx4GTpjhPuzn2XSyqWdaS4HM3qJcdcCZRyvc009Avodeu0yErB0ZLysDveTXALw2Yj3NArFwueGIxb+9RO7F1R7YrJrEihYClhD/XkKmmPpug8La0IqZNs1e6TsBGQLKfQmbHQkELX3Hr46oH++Nt1nbH/VBmuenMZnvpyY1hDta2E1r7jw0XnsPNYKYbIxcFcQupzqaoRmsQ1UrwfTMqUeOpsnGjfIrn1UyAEcEjOjKn1zEOtFWO8P1wvJRF/HtPJY1ko4ZhYlDixlLAraD23yixKZomxBywj4HVnrdxzCgXNM5GWJIVuzOixq7HZCDf0zMWCCUNw90X5+HzNQQzVrZKetVkqh2GUAXQuIdw57FqyaSLFu6yskmbZTBVjj7bzozXlURFub3tM4JsFxGx9TJYSdl9FlAKhdKCaIcZ+IgSPvbyqBuv3F6GvKuNFq8dutD+TkZSAZ0d1wNxHB6JLrlRJb+Try7BiV/TnoYwWfvs2NV5WS3acQOMMJ9rJE2fUCOEe0h8Lj9175q4jxeV10iy13iG/u6wdkhJsyKmfEpINuVlSO8NNedRSANBI1PenGWy0lrArJ1fj9l1y6iEjyeF/AEiMqK5x4eTZSs3C/vP+IlTWuNAnP8t9kZhxlpZAtG6Ujv+M641/3d4DZyurccs7q/Dbj9a5PdV4QMsNXOMSWL7zBAa2yXZPIiE8hD0p6gFk7zEUh4vPoXG60z1qE9D+kLqsYxNse/Fyv9Pc+aNxehIS7TZ3yqO/dMdgmEAzfVJaEf2SH6FgqTlPQ70BMlMSsObZSwyf4/NUWSWEALLTEjVtv1KOr/fMy3IvKzNxjN0fRITLOjbB4LbZmLpkN6Ys2on5247igcGtcd/gVu4h+FYnkDhtPlSMorIqDGzTsLakgEsKh6QnOcKe6zMQ3g8c7wmzC4vK0dTrTSHacV+bjZBTP1mzx+5tjQleugPiPUgpcD32KBsDi3nsCqG86hgt6gK1HlMgj119rlftOYkOzTKQmZzgvggqa1yaQlBm6FzyJinBjvEXt8H8J4bg4gsb49V52zH8H4sxd/MRU9obKoGasESeX3ZA64Ye07gpOeyAvg67L9E4fsbTYy+M4eAkNTlZKXWmyAsVs14u6s5TS5TtNRO1NZmN/+FCQakTo6UGe3lVDdbtL0Kf/LojSis0DCKxm6Gn2A/N6yXjzVu64+N7+iA10YH7P1yL29/7CTsDTHRsdZbuOIGC5hlokFYb+lBCMUp8Pdodl8dV2UlCCBQqaZYqYuFF5tZPrjOTUp0iYPqN1Yop3HkaAVSr7JZCi8eusP5AESqrXR4dpwpaUqoev6QdAKC3KoxjNvpf0BBzxg/An67qiI0HizDitaV4cfYWnCk3V5xSK4FEcd3+0+5ZgWqrO0IW9th4zcdUHvvpsipUVLs0jZbVm9ysFBSVVaGkvCqoc2b20Is3Zht9ai1hD7Hz1CwodWK0eOyrdp8CkW9hLlONPvV3Y2QkS90mRoegguGw23Bn/zwsnDAE1/fMxfvL92DYxEX4bPUB041ejcSaapfAQLewS8tKy6txuqyq1mOP0L5gqGPsHp22KmKho7lyJk0k4Rizvq2XeqWUGv1gMvfd74USF0wJsUfeaI6XVCAl0e53kmug9kJYufskLmySgUwfkyz4yozR+iprVhqkOfGXazrhfw8NQMsGqXjyi40YM2U5ft4f/kTDehPqb6rePCXRju4t5fEUsrIflMMRwXLY9ejQrKx24XRZ7ZuQMsGGvxrw0URJeQxUWqC2HrsXRitlABLtNpSq700T3IOWEvYXry7Aazd2RbcWkddejiXHS7TnsK/bfxp9WtV66+rL2cyjTyOloHkmZtzfD6/e2AWFxeUYM2UFJny+Iaxyx3oTiab0bdUATofkiCihGGX+z9oYu+/v6uGdniit23EKIGYle9UoE24cPF0WfrqjCUTTm1SnnUMxkZDqdODqbs2NNiNkTpQGGXWqoqLa5bPjFNA2+tTEjk1QiAhjuuVgwYQhuH/wBZi1/hCGTVyEd5fuNl0tjkCoT8GgNg3d/1dCMUoHYrQGJ6nFz3twUmFxORLshIapsa8Bn5mcgHSnI6xBSma+rNOSHHWcrliUDQiEpYTdqhwvqUC2RmEHgD75vjs+tXjsygVlZYFPczrwh8vb47tHB6FHXn28NGcrRry2xJ06GGuCeYmB1g9sWzu/r9pjtxHQOCoTbHieeO83nsKic2ickeQOC8USIpJSHgOUFaj15P1NjWc+UhMddco2BILz2OOEE6UVaJgeeHCSIsjtm6SjfqrvbbV47P0uaICx/fMw8fouoRtqMlplp2HaXb3x/tieqHEJ3PH+T7jnP2u85s40H2rxadWwdhIORUwLi8vRJCMJDnkm5mje6N6Dkw4Xl3vUiIk1uXUGKWlrvJkdlTSnwyuP3XhY2KNMVY3UeZWdpi2m6SvNUUFLTXa7jfDCVR3R2IB0tmgxrH1jfPfYIDw5oh2W7zyB4a8uxqTvfzVNYbTAowxrV6qd5FjUiAEkj11tX2HxOUPi6wq5WSk4cLrMXZPeG/957H7mxjMBqU6H6Up+sLBHGXeqYxCPXcFfGAYAykzWQRNLnA47HhzSGgueGILLC5pg8oKdGD5pMWZvPGyZ0at2lcKqhd1fPFZZ3lBjKQpfHCupQFZK7fePFlcYWjspt34yyqtcQSd39/esNOOZTkty1BmgZPQbBgt7lHEPTgoSY3cm2GAjoLeXsKsvEDPNomQUTTKT8M+buuHz+/uhXkoiHvr4Z9w0dSW2Fp4x2jQ3/u5p8ifs0QzFnPHMyKqscfkOxcRIiFo0UHLZpXCM1rYbLZSBSEt0cD328w1F2BsG6Si7qVcuPr2vHxoEeACczx67N73ysvC/hwfgpasL8OvREox8fSmen7UZRWWBPcFwUPKvteLPq1SHYprHKBzia4IXI+rEKLgHKZ323U/i77fr1kIaC9C9pflSnVOdDo8BSmZ4g2RhjzLKK2cwj71eSiJ6BSkDYLY4ntHYbYTb+rbEoglDcJs8k/zQiYvw0ap9qNFx9KrWVNVgqOv4xCzGfqYcjdI9hTyUY+tdxyanvqfH7v/Anh8HtsnGuucuwdB2jXS1Rw/SnHacrawx1YhpFvYoE0qdmEAkJ9jjeoBSJNQLD8piAAAdoElEQVRLScT/jS7AnPED0bZxOp75ajOuemMZ1uw9pcv+/XlgoQ4g8heK8XvcMCPKyreEED49diNj7MmJdjRMc4ZVViDLT7aY0Sgjysuqau9PoyNHLOxR5kRpBdKdjohrj6ck2k2TBWJWLmyagU/u7YvJN3fDqbOVuO7tH/HoJz/jSHF58C8HQK83a39ZMXp6xepdFZVVoapGoJFK2BMdNjQwWCBzs5LdZQXqlsRQSgoYLY3aUaav1Bpn5zz2OCCUcgKBSHGyx64FIsKVXZph/hOD8fCw1vhm8xEMm7QIby3ahYrq8H4/f2/YoYqPOhSTkVRbN8hvZ2uE4qaMOm2UUXv9Nc1MMnxy99z6KSg+Z81Knr5Ikz12ZZCSGQIyLOxRJpRyAoFITXR4eOwm6J8xNSmJDjxxaTvMe2wwLmrdEH+duw2XvboEC7Yd1e0YoYZK1HPvxkJclcFJ6v4dI8r1eqPUjPGFFS/r1MTQPPZYwMIeJZQbyFeMMxxSEu0+0x3NnAZmBlo0SME7d/TEB+N6w2YjjJu2BuOmrcaeE2c178PfYBoFrZ51rM/VcbfHXivmseq0DYQ6y8jfA85K17USY1cLu9FvRSzsUeK2vi0ASDdXJANMFFKdDk53jIDBbbMx95FBeOaKC/HTnlO49NXFeOXbbZq8rGBepFbP3Rbjm90dikn3DMUYjZLyGC+ky2E1rbMoxeIqYGGPMmWVNbp47KmJDh6gFCGJDhvuGdQKCyYMxuiuzfH24l0YNmkRZv58KHDusU5xL/8Dl3TZfR2Onak7D4D3JNZuG2LYWZkbIBRjxViM8vsqwm6GMCkLewzQKxTDWTH60Cg9CROv74IvH+yPxhlJePTT9bj+7R+x+VCxz+2V+9SfAEcqisG+H65QHC+t8PDWAaCpCWLsTTOT3B3J/juOrUOqU8p44xj7eUYknafKTZ/itKOqRqBSw4TWjDa6t6iPmQ9ehL9d2xl7TpzFlW8sw9NfbcKps56jVxVhjXUoJVyUt49jPgYnGVkATMFht8VsvtdYkOb22DmP/bxCr1AMoK10L6Mdm41wQ69cLJgwBHf1z8enqw9gyN8X4oMVe1EtT+4R7Xk2gz0vQnmeqDf1lWprZMleNf7i7Gad0zQQyQl22KjWYw/Wglh0rEYk7ET0dyLaRkQbiegrIqqnl2HxhB7pjimJoXXQMKGRmZyAP17ZAXMfGYhOOZl4/utfMGryMvy466Q7j92AuSkiwpew1/Mxl64RBOtAtcjLEQBJqFOddSs8GkmkHvsPAAqEEJ0BbAfwVOQmxR8NdMmKkeJ4ZdyBGlXaNE7Hh3f3wdu3dUdJeTVufmcl3lq0C0D0OhijsddzlTUoqaj2GJwEGJ+Gp6CkPJrEnIhJiydhF0J8L4RQWrMSQE7kJsUXmckJ7smMIyE50XwdNPEKEWFEQVPMf2IwHhve1r3cYfdUIb2yH6Ihbr4GJ5kJf5kxo7s2x3U9cvDkiPYxtigyUr1mUTI6yK5njH0cgG/9rSSie4loDRGtOX7cmLkrjSDS+Lpy09fG2NljjxVJCXY8MrwNPry7DwA9zmXs7nZfg5PMROtGaQBqQ4wKSQl2TLy+i24VNWOFOhQTrGxvLK4CR7ANiGgegCY+Vj0jhJglb/MMgGoAH/nbjxBiKoCpANCzZ0/r9ZCEiHIT6zE4CZDSHQH22I1AyeDwviH96rTOiczh7O6YxgleFGIdEunYLBP/e2gACppnxPbAOvLlg/1xVC4wl+7tsRtMUGEXQgwPtJ6IxgIYBeBiYYYK8yYjO10fj8ldGpQ9dsOIdXw6ksMd91EAzGx0ysk02oSI6N6idtKPVKe9zsThRhJU2ANBRCMAPAlgsBDC3FPHG4ReMU63x87pjuYnZEXWv2zvsZJy2G3kMd8pEz2kGLu2PPZY+AcRCTuANwA4AfwgezMrhRD3R2xVHKF1EutgKIMgyuSLh1+NYkdeg1Tc0DMH4wbkR2X//m70SN5/j52RahTZIszRjJOklaijzooxw70ZkbALIVrrZUi8EqnH/uSIdnjs0w3uKcW8PXYrTUhgVWw2wt+u66L9CzpHJMPx8KRyAubsOI1HlKwYs0SjI/XYmSAEm8Q6GGO65WBMNymLNDnBzjF2E6FbuqM+u/Hg2JkKU1RyPF9IczpQ7RKokEt+GD1egEsKRBk984hTnXZT9bwzoeG/uqP+RcCO6TRzF6ONNKf2keGmLynABEfPmysl0VwpVec7fu9PnW7ccHdT4xI4dbZuZUcmenhMtmGCaAwLe5S4IDsVbRun6TpxsL9ZlBhj8OdJX9y+UUj70dt/O3m2Ei4BZIcwOIl7aiIjTS75YZayAhxjjxIjCppiREFTXfeZ6nRwdUcT4u1ZZ8kP80SHMX6TUnbYrOUE4pFaj11yvIx+ULLHbiFSEu0eubKMOYi0E1XPkKs6S8rMg5PijdoYe5XBlkiwsFuI1ET22C1FhIIf6QODY+yxQz3ZhhlqyrOwW4gUJ3vsZsTb4zZLKVqrFdKyMh6dpyaAhd1CsMdubfzOmRrici1kJicgKSHyctGMNryF3eiHOwu7hUh1OjgrhtEEh2FiSyh57LGAhd1CpCbaUVntQlUNT2gdT0SjLAQPTootdhshOcGO0vJqvStKhAULu4VI4dK9lkJzJ1oUXttD9diNHgIfD0hv1OyxMyGSmqjMe2oOr+B8x98pMENhNvbYY0+a045Sdx4714phNJLio+edHS3rE+wUhvIMV2K8XNkx9tRWeDTaEhZ2S5Hqnh6PQzFmwIzPVGUWHx6cFHvSnA6UlnMohgkRZeJfs8TxzndCdcz8xbGDxbdDeYCEOtcpox/qyTaMhoXdQqTKhYbK2GO3BFpfyfX0/IvKpCHtennsHOrTjrrz1OjfjYXdQrDHbg2MvqkB/SZRZ7TjjrFzSQEmFNweO6c7mgIT6LdfMpK4cGusSU9yoIRj7EyouD12k8Txzndi5ZeFcxzOS489qYkOVFS7UONij50Jgdo8dvbYrYDW29tvrRjdLNFgQwyPFa+kmmiyDRZ2C+Gw2+B02DjGbhL8zowX8n5YVuOBNK/JNoyEhd1ipDodnBVjEox/4WbMRKqJCoGxsFsMad5T4y8cRj/8hWL4wWEt0uQOazN0oLKwW4zURAd3np5ncKDGGqSpSn4Y3XnNwm4xUpx27jy1CELjCCU9a8UwxpEqZ62dqzL+/mRhtxiKx26GQRCMb0L21kyQFcNEjuKxmwEWdouRkujpsfPNbz2cDr7t4pE01aAwo+9L8zxiGE2YqZg/EzrPjeqAQW0aGm1GHXg8U+QoeexmgIXdYqQk2jnd0cLcPSDfaBOYKOF02JFgJ1TVGB8m5XdCi8Eeu3XQPPLU8Bd3Ri9STRJnZ2G3GKmJDpRXueAyQT2K8x1/WS8hjzz184VEORbfJSczxD0yRqFkxhgd2oro8UJELwIYDcAF4BiAsUKIw3oYxviGKzyeP6QnJWDWby9C60ZpRpvCaCTdJFU1I/XY/y6E6CyE6ApgNoA/6mATE4Damuws7Eaj1yCUQHvpklsvqq/3mckJUdv3+UhchGKEEGdUH1PBYymiTu0sShxnNxqtA5CsyIRL2xptgiUxi7BHbAUR/RnAHQCKAQyN2CImIOyxmw9/nrvmqfEMDMj6ezg9NKwNHhrWJsbWWJ802fEyOsYe1GMnonlEtNnH32gAEEI8I4TIBfARgIcC7OdeIlpDRGuOHz+uXwvOM5Sa7Fwvxjx4i2PIA09NkBTDmTn6YJbRp0GtEEIM17ivjwB8A+B5P/uZCmAqAPTs2TN+32GjTIp84ZRxyiPDmA6zhGIiirETkfpdbTSAbZGZwwSj1mPnUIxZiDSUwr5y/GAZjz0IrxBRO0jpjvsA3B+5SUwg2GNnGPOieOxGh7YiEnYhxLV6GcJoQ/HYzTBLCyPhrwNy/LDWMbaEMRqzhGLMYQWjGSUrxj1Aid/jTQcRYe8rI0PYPorGMDEl3STCziUFLEaiw4ZEu42zYkyE0bPlMObBLB47C7sF4VmUzEXkA5UMzGM37MjxSapV8tgZ85Ga6EA1FwGLG4wWAQAc0tMJs2TFsLBbkJRE8xT0ZzgUw9TCoRgmbFJMcvEw+sCPhfiBO0+ZsEllj51hTEltHruxsLBbECXlkYkPOJQTP6Qk2k3RZ8LCbkHMNGkuEzkm0AFGJ4jIPYuSkbCwWxD22M2BXnlJDdOdOu2JMQNpTofhqU4s7BaEY+zxRfN6yUabwOiIGd6oWdgtCGfFmIO4CKHwcAjdMUMuOwu7BUkzgUfAxJcmmqHDL15IT0qAzeDf0/hHCxMyHGM3F6yJjJpHhrdBRZXLUBtYISyIOoZndN1nJr48dyZyeuVlGW0Ch2KsCHvsDMMEghXCgpghT5apxUzvTB/e3QeHisqMNoMxGFYIC5LCnaeMHwa0aWi0CYwJ4FCMBWGPnWGYQLCwWxAu28voxaguTQEAiXaWgniCXT8LYpaaz4z1eXF0AZ68rD2SEthZiCf4MW1B2GNn9MJht6F+aqLRZjA6w66fBXE6+HlsBi66oCGu7toMT1zazmhTGMYDFnYLwvW7zUGiw4bXbupmtBkMUwd2/RiGYeIMFnaGYZg4g4WdYRgmzmBhZxiGiTNY2C0O96MyDOMNCzvDMEycwcLOMAwTZ7CwWxSu7cEwjD90UQcieoKIBBFxzdAYoZTuFTx9D8MwXkQ88pSIcgFcCmB/5OYwWklNdKCorArlVTVGm8LowIujO6KgeabRZjBxgh4lBV4F8CSAWTrsi9GIUi+motrYSXMZfbi9X15U9//fu3tj70meWel8ISJhJ6LRAA4JITZw/ZIYwz83EwID22RjYBujrWBiRVBhJ6J5AJr4WPUMgKchhWGCQkT3ArgXAFq0aBGCiQzDMEwoBBV2IcRwX8uJqBOAfACKt54DYB0R9RZCHPGxn6kApgJAz549ucuPYRgmSoQdihFCbALQSPlMRHsB9BRCnNDBLoZhGCZMOBmaYRgmztBtog0hRJ5e+2IYhmHChz12q8K9FAzD+IGF3eJwlinDMN6wsDMMw8QZLOwMwzBxBgs7wzBMnMHCzjAME2ewsDMMw8QZLOwMwzBxBgs7wzBMnMHCzjAME2ewsDMMw8QZLOwWh+c8ZRjGGxZ2q8KlBBiG8QMLO8MwTJzBwm5VOATDMIwfWNgtDld3ZBjGGxZ2hmGYOIOFnWEYJs7QbWq8SKmqqsLBgwdRXl5utClRISkpCTk5OUhISDDaFIZhDGDi9V0wa/2hmBzLNMJ+8OBBpKenIy8vDxRngWMhBE6ePImDBw8iPz/faHMYhjGA63rk4LoeOTE5lmlCMeXl5WjQoEHciToAEBEaNGgQt28jDMOYC9MIO4C4FHWFeG4bwzDmwlTCzjAMw0QOC7sXM2fOBBFh27Zt7mXbt2/HFVdcgTZt2qB79+644YYbcPToUSxatAijRo3y+P7YsWMxY8aMWJvNMAzjhoXdi+nTp2PAgAGYPn06ACn2P3LkSDzwwAPYsWMH1q1bhwcffBDHjx832FKGYRjfsLCrKC0txbJly/Dee+/hk08+AQB8/PHH6NevH6688kr3dkOGDEFBQYFRZjIMwwTENOmOav70v1+w5fAZXffZoVkGnr+yY8BtZs2ahREjRqBt27Zo0KAB1q5di82bN6NHjx5+v7N06VJ07drV/Xn//v11wjMMwzCxxJTCbhTTp0/HI488AgC46aab3OGYQAwcOBCzZ892fx47dmy0zGMYhtGEKYU9mGcdDU6dOoUFCxZg06ZNICLU1NSAiPD8889j8eLFMbcnGM4EOwAuy84wTF04xi4zY8YM3H777di3bx/27t2LAwcOID8/H61bt8aKFSswZ84c97ZLlizB5s2bDbQWmHp7Dzw6vA3yG6YaagfDMOaDhV1m+vTpGDNmjMeya6+9Fp988glmz56NyZMno02bNujQoQOmTJmC7OxsgyyVyM1KwaPD2/LAJ4Zh6mDKUIwRLFy4sM6y8ePHu/8/d+7cOusbN26MIUOGeCybNm2a3qYxDMOEBAs7w1iQdKcDGclcKZTxTUTCTkQvALgHgDJa52khxDeRGsUwTGA2PH+p0SYwJkYPj/1VIcREHfYDIUTcxoyF4ElKGf2w2eLzPmH0wTSdp0lJSTh58mRcCqBSjz0pKcloUxiGOQ/Qw2N/iIjuALAGwBNCiNO+NiKiewHcCwAtWrSosz4nJwcHDx6M2xosygxKDMMw0YaCechENA9AEx+rngGwEsAJAALAiwCaCiHGBTtoz549xZo1a0K3lmEY5jyGiNYKIXoG2y6oxy6EGK7xgO8AmB10Q4ZhGCaqRBRjJ6Kmqo9jABg7HJNhGIaJOMb+NyLqCikUsxfAfRFbxDAMw0RE0Bh7VA5KdBzAPp132xBSvD+e4DZZh3hsF7fJfLQUQgStZ2KIsEcDIlqjpVPBSnCbrEM8tovbZF1Mk8fOMAzD6AMLO8MwTJwRT8I+1WgDogC3yTrEY7u4TRYlbmLsDMMwjEQ8eewMwzAMLCbsFK+lHxnTw9ceYyUsJexQDaiKlxuNiNoRkdXOQ0CI6BYi6iL/Py7OE6x3rzDnMZa4WIloBBF9B2AiEY0BAGHxzgEiuoSIVgH4DSxyHoJBRMOJaCmA1wB0A+LiPI0kotkAXiSii4y2Rw+I6GoimkxEWUbbohdym1402g6zYNqp8WRPLwHAywD6AfgrgBwA1xPRZiHEDiPtCwe5TQ4AzwG4GcDvhRBfqtdbTQjlNiUB+ABAIwAvARgNIEVebxdC1BhnYfgQUQ8AzwN4AUAGgDuJqI0QYhoR2YQQLkMNDBH5XI0B8GcA6QAWEdFXVmuHgtweG4C7APwBQEsi+l4IsdRYy4zHtJ6ikKgEMBfAYCHE1wBWAKgCsMdQ48JEblMVABeAGYqoE9FAIrLkBJZym84B+EgIMUQI8R2k83S7vN6Soi4zHMBSebrHWQCOABhPRJlCCJfVwkyy07AbwAAAjwC4DZKzZEnka68GwE5Ib4gPQiofft5jOmEnovFE9A4R/QYAhBDzhBDVRHQFgC8BtAPwMhHdKG9v+ptL1aZ75UVvA2hKRP8mok0AngTwHoBx8vZWatM9ACCEmCUvt0N68P5CRLlG2hgq3m0CsBDAlURUX354VQEoBvB7wBphJiK6k4guUS3aLIQ4KYT4AlJ7riGiRIPMCwtvjQCwWAhRIoR4B0AqEd0tb2c6fYsVpmo4EY0FcAuALwDcTkRPE1FrefUJACOEEH0h3XDjiCjP7DeXV5tuJaJnAVQAmAkgEcD1AK6S119DRC0s1qbb5PPUCnB76GcAdAFQZJiRIeKjTc9Aqlj6HYD/yn0HrQC8AqAeEaUaZKomiKg+Ec2AZO8k+YELAOo3jX8CuBJAgdd3TetY+NCIpyCdF4U/AnhcfhhbMsSkB6YSdgAXA/irEGIugCcgCd+tACCE+EkIsV3ebiuA4wCqDbEyNLzb5ARwnxBiJoB7hRDbZCHfCEkIq4wzVTO+ztNtykohxCYA5QBuMsa8sPBuUxKAO4QQD0N6xf8/IcRdkNqVLIQ4a5ypwZGnqPwewIUA1kISPGWdkP9dDmA9gMuJqL3yRmlyx8LXebpVWSmE+BaSPtxLROlEdL0xZhqLKYRd9cr0M4BRACCEWANp6r1mPrIRxkLqnDsZKxtDJUCblgPIJ6KLvMThTgDJAHzOGWsGgpyn5kQ0QN6OIHm6SWb2/oCg56ktEQ0UQuwXQvwgbzcSwK7YW6od1W/+HyFEEYApkN4GW8p9A3ZVu18D8BSAxZA6v03psQc4Tz9CuvbUGvF7AH8BsAO+p/WMewwRdiLqSERJymfVK9NyADYiGiR/3gzgMIBm8vfuIKLNAPIBPCDHPU1BiG0qRG2briWiDZBeJx8QQpTH0OyAhHGemsrbCUgicdZs3l8YbWoif28QES0G0AZSH4lp8NEmxSMvl/9dDeBbSNkwEELUyALfGMAbABYA6CqEeEn9fSMhoouI6ALlcwj3U2tID7KZALoLISbHzmrzEFNhJ6LORLQMUkpcA9VyxY4dAH4BcKOcJncQ0o2VL6/fCCl8cacQ4mgMTfdLmG1qjNo2bQdwvxDiDou3qQmAPNVuJggh3o+RyUHR4TztBfCgEGKMEMIUEzUEaBP56Dh8A0Br+SGQTUT5kPqtHhZCXCWEKIyd5f4hou5E9D2kh02manmw85Qnry8G8JAQ4hohxOHYWW4uYu2xPwspzW+MEOIQ4M5zVp7GJQCWQopDTyQpBbA+5BlPhBDrhRArYmxzMCJt0yYhxI8G2B2IcNvkDo3JqapmItLztF8I8YsBdgfCX5uE7JEnE1EaINkP4CsAmyC1s77sue83zHoVRJRARP+CVH3xdUihvCHyOs3XnhDiuLDgGBe9iYmwE5FNzpooFUK8Ji+7hIjqASD580sAPob0xH0O0slaKn/+IBZ2hgK3idtkFBrb9CKAjyBnjBDRzZA6gScC6CSEWGeI8f5xAlgCYKAQYjak1OYLicghZ1qBiP4EC50nI4nayFMi6gvglBBiu+w9nAAwkIhGQRpGnwzgKICtRDQd0gX4lBBip/z9cQBShRAl0bIxVLhN3CajCKNNFwB4UmkTpLEFQ4QQphncp24TpP6Yj1Sr7QBqhDSGhQB0gtS/8QchxC75+6Y7T6ZBCKHrH4B6AOZAemV6FtIPr6x7GsA6AFfJnwdBGtHXT7WNTW+buE3cpvO4TXaj26C1TZDeNmzy/1tDelDVV9aZ+TyZ7S8aoZhUSPGxh+X/D1Ktmw2pk0MpPrQG0jDtckB6xRTmHFTAbeI2GUWkbTJjSQefbRISLrmjdK+8zWBlHWDq82QqdBF2ktIQBxNRhpA6caYC+AzSBdaHiJoDgBBiI4DfAfgtETWENKilE2o7PkxzwrhN3CajOE/bpKQrkmy3U/6q8pAiwFxtMjNhT40n/9BNIHVmuCAN2kgF8IiQ08FIGjRwA4A1Qoj/qr77OKS4ZhsAjwkhtkTSCL3gNnGbjILbhNVCiA/lZXYhRA0RfQhgpxDiBSPstzThxG8gx+0AtAXwobIMwGQAX3pt+xikPNtMAOmq5QlGx6G4TdwmM/xxmzzalKJanmh0O6z6F1IohqShyC9Dqq44GFKlxRrAXfzpEQD95XUK7wBIA/ADgJ3KK5eQytcaDrfJDbcpxnCb3KjbtEfVJrONhbAMmoVdPhFrIeWO7oRU97gKwFAi6g24418vyH8KIyHlz26AlD9rmtFg3CZuk1Fwm6zRJqsSSh67C8AkIcf2iKgbpOHWfwTwFoAecm/2TADDSCqpuxdS58dwIcQSXS3XB24Tt8kouE3WaJMlCSUUsxbAZ1Rb13k5gBZCiGkA7ET0sPw0zoE0sGAvIE3AYOITxm3iNhkFt8kabbIkmoVdCFEmhKgQtXmxl0CqiQ5Icw5eSNKkv9MhDZowZflPNdwmbpNRcJus0SarEnJJAflpLCBVVPtaXlwCaRRcAYA9Qi5IJIQwvPynFrhN3Caj4DZZo01WI5wBSi4ACZCq3nWWn8DPAXAJIZYpJ8xicJusAbfJGsRjmyxFWAOUSCres0L++7cQ4j29DYs13CZrwG2yBvHYJisRrrDnALgdwD+EEBW6W2UA3CZrwG2yBvHYJisRdkkBhmEYxpyYYjJrhmEYRj9Y2BmGYeIMFnaGYZg4g4WdYRgmzmBhZxiGiTOiNpk1w5gBImoAYL78sQmkErLKMPcyIUR/QwxjmCjC6Y7MeQMRvQCgVAgx0WhbGCaacCiGOW8holL53yFEtJiIZhHRbiJ6hYhuJaKfiGgTEV0gb5dNRF8Q0Wr57yJjW8AwvmFhZxiJLgDuB3AhpBGTbYUQvQG8C+BheZt/AnhVCNELwLXyOoYxHRxjZxiJ1UKIQgAgol0AvpeXbwIwVP7/cAAdVJVmM4goTQhRGlNLGSYILOwMI6GuZ+JSfXah9j6xAegrhCiPpWEMEyocimEY7XyP2rAMiKirgbYwjF9Y2BlGO+MB9CSijUS0BVJMnmFMB6c7MgzDxBnssTMMw8QZLOwMwzBxBgs7wzBMnMHCzjAME2ewsDMMw8QZLOwMwzBxBgs7wzBMnMHCzjAME2f8P3NEpa0udgJ5AAAAAElFTkSuQmCC"
},
"execution_count": 92,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"Tuesdays = df3[df3['Day'] == 'Tuesday']\n",
"Tuesdays.set_index('Time',inplace=True)\n",
"Tuesdays.plot()"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([[]],\n",
" dtype=object)"
]
},
"execution_count": 93,
"metadata": {
},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEDlJREFUeJzt3X2sZHV9x/H3t7uAwLULirnVxbokWisBte6tFfFhF2iKLEFtraEVBRuzSVOVGlq7xhjTP0xpaU1p2qTdYMVW6m27UmvAB1B2fUgE3UXiyq5WRYK7LipR0EtNKfXbP+ZwHZc7d87OzsP5kvcrOeHMub9z5sPcO585c+bMnshMJEl1/NysA0iSjozFLUnFWNySVIzFLUnFWNySVIzFLUnFWNySVIzFrceEiNgVET+IiOMOW/78iPhIRNwfEd+PiM9HxOubn22KiAMDtvWGaWWXjpTFrfIiYgPwYiCBi/qWnwXcAnwKeDrwROD3gZdNPaQ0Rha3HgteB9wKXAtc2rf8KuB9mfnnmXlf9uzJzFfPIqQ0Lha3HgteB1zXTL8REfMRcQJwFrBjpsmkCbC4VVpEvAh4GvBvmbkH+Abwu8DJ9P6+Dw3ZxFOa49/LE/CiiYaWjpLFreouBW7KzPua2//SLPsB8BPgyUPW/3ZmntQ/AZ+dXFzp6K2ddQBpVBFxPPBqYE1E3NssPg44CXgG8Dngt4Cds0koTYZ73KrsFcD/AacDz22mZwGfoXfc+63AZRHxxxHxRICIeE5ELM4orzQWFrcquxR4b2bek5n3PjIBfwu8Bvg8cE4z3RUR3we2Ax+ZWWJpDMILKUhSLe5xS1IxFrckFWNxS1IxFrckFTOR87hPOeWU3LBhw0jrPvjgg5x44onjDTRGXc8HZhyHrueD7mfsej7oVsY9e/bcl5lPajU4M8c+bdy4MUe1c+fOkdedhq7nyzTjOHQ9X2b3M3Y9X2a3MgK7s2XHeqhEkoqxuCWpGItbkoqxuCWpGItbkoqxuCWpGItbkoqxuCWpGItbkorx0mWSytqw7cbl+buv3DL28V3lHrckFWNxS1IxFrckFWNxS1IxFrckFWNxS1IxFrckFWNxS1IxFrckFWNxS1IxFrckFWNxS1IxFrckFWNxS1IxFrckFWNxS1IxFrckFWNxS1IxFrckFdOquCPiLRFxZ0R8OSI+EBGPm3QwSdLKhhZ3RKwH3gwsZOYZwBrg4kkHkyStrO2hkrXA8RGxFjgB+PbkIkmSVhOZOXxQxOXAu4AfAzdl5mtWGLMV2AowPz+/cXFxcaRAS0tLzM3NjbTuNHQ9H5hxHLqeD7qfcRr59h58YHn+zPXrjnh8lx7DzZs378nMhVaDM3PVCTgZuAV4EnAM8CHgktXW2bhxY45q586dI687DV3Pl2nGceh6vszuZ5xGvqf9yQ3L0yjju/QYArtzSB8/MrU5VHIe8M3M/F5m/i9wPfDCEV5QJElj0Ka47wFeEBEnREQA5wL7JxtLkjTI0OLOzNuAHcDtwN5mne0TziVJGmBtm0GZ+U7gnRPOIklqwW9OSlIxFrckFWNxS1IxFrckFWNxS1IxFrckFWNxS1IxFrckFWNxS1IxFrckFWNxS1IxFrckFWNxS1IxFrckFWNxS1IxFrckFWNxS1Ixra6AI0njsmHbjcvzd1+5ZYZJ6nKPW5KKsbglqRiLW5KKsbglqRiLW5KKsbglqRiLW5KKsbglqRiLW5KKsbglqRiLW5KKsbglqRiLW5KKsbglqRiLW5KKsbglqRiLW5KKsbglqRiLW5KKaVXcEXFSROyIiK9ExP6IOGvSwSRJK2t7seCrgY9l5qsi4ljghAlmkiStYmhxR8Q64CXAZQCZ+RDw0GRjSZIGicxcfUDEc4HtwD7gOcAe4PLMfPCwcVuBrQDz8/MbFxcXRwq0tLTE3NzcSOtOQ9fzgRnHoev5oPsZB+Xbe/CB5fkz168buP6gcf3L+w3a1mrju/QYbt68eU9mLrQZ26a4F4BbgbMz87aIuBr4YWa+Y9A6CwsLuXv37iPJvGzXrl1s2rRppHWnoev5wIzj0PV80P2Mg/Jt2Hbj8vzdV24ZuP6gcf3L+w3a1mrju/QYRkTr4m7z4eQB4EBm3tbc3gE8b9RwkqSjM7S4M/Ne4FsR8cxm0bn0DptIkmag7VklbwKua84ouQt4/eQiSZJW06q4M/MOoNWxF0nSZPnNSUkqxuKWpGIsbkkqxuKWpGIsbkkqxuKWpGIsbkkqxuKWpGIsbkkqxuKWpGIsbkkqxuKWpGIsbkkqxuKWpGIsbkkqxuKWpGIsbkkqpu2lyyRpZIOutK7RuMctScVY3JJUjMUtScVY3JJUjMUtScVY3JJUjMUtScVY3JJUjMUtScVY3JJUjMUtScVY3JJUjMUtScVY3JJUjMUtScVY3JJUjMUtScVY3JJUjMUtScW0Lu6IWBMRX4yIGyYZSJK0uiPZ474c2D+pIJKkdloVd0ScCmwBrplsHEnSMJGZwwdF7AD+DHg88EeZeeEKY7YCWwHm5+c3Li4ujhRoaWmJubm5kdadhq7nAzOOQ9fzwWwz7j34wPL8mevXrTimP1//+H796w4a03bcoByrje/S73nz5s17MnOhzdi1wwZExIXAdzNzT0RsGjQuM7cD2wEWFhZy06aBQ1e1a9cuRl13GrqeD8w4Dl3PB7PNeNm2G5fn737Nyhn68/WP79e/7qAxbccNyrHa+Aq/55W0OVRyNnBRRNwNLALnRMT7J5pKkjTQ0OLOzLdl5qmZuQG4GLglMy+ZeDJJ0oo8j1uSihl6jLtfZu4Cdk0kiSSpFfe4JakYi1uSirG4JakYi1uSirG4JakYi1uSirG4JakYi1uSirG4JakYi1uSirG4JakYi1uSirG4JakYi1uSirG4JakYi1uSirG4JamYI7oCjqTHjg39V2q/csvYt3nt+Sce0fhx3vdjnXvcklSMxS1JxVjcklSMxS1JxVjcklSMxS1JxVjcklSMxS1JxVjcklSMxS1JxVjcklSMxS1JxVjcklSMxS1JxVjcklSMxS1JxVjcklSMxS1JxVjcklTM0OKOiKdGxM6I2BcRd0bE5dMIJklaWZuLBT8MXJGZt0fE44E9EXFzZu6bcDZJ0gqG7nFn5qHMvL2Z/xGwH1g/6WCSpJVFZrYfHLEB+DRwRmb+8LCfbQW2AszPz29cXFwcKdDS0hJzc3MjrTsNXc8HtTPuPfjA8vyZ69dNM9LPqPwYHm7QY3qky490m6etW7Ocr3/5KAbdx9GaPx6+8+PZ/q09YvPmzXsyc6HN2NbFHRFzwKeAd2Xm9auNXVhYyN27d7fa7uF27drFpk2bRlp3GrqeD2pn3LDtxuX5u6/cMsVEP6vyY3i4QY/pkS4/0m1ee/6Jy/n6l49i0H0crSvOfJi/2rt2pn9rj4iI1sXd6qySiDgG+CBw3bDSliRNVpuzSgJ4D7A/M989+UiSpNW02eM+G3gtcE5E3NFMF0w4lyRpgKGnA2bmZ4GYQhZJUgt+c1KSirG4JakYi1uSirG4JakYi1uSirG4JakYi1uSirG4JakYi1uSirG4JakYi1uSirG4JakYi1uSirG4JakYi1uSirG4JakYi1uSihl6BRzVdzRX8x7XfU3Dkd730WQ9miun91vtfodt64ozH2ZTi/GDttnG0Wxz78EHuGxMV2Qf55XdHwvc45akYixuSSrG4pakYixuSSrG4pakYixuSSrG4pakYixuSSrG4pakYixuSSrG4pakYixuSSrG4pakYixuSSrG4pakYixuSSrG4pakYixuSSrG4pakYloVd0ScHxFfjYivR8S2SYeSJA02tLgjYg3wd8DLgNOB34mI0ycdTJK0sjZ73M8Hvp6Zd2XmQ8Ai8PLJxpIkDRKZufqAiFcB52fmG5rbrwV+LTPfeNi4rcDW5uYzga+OmOkU4L4R152GrucDM45D1/NB9zN2PR90K+PTMvNJbQauHdc9ZuZ2YPvRbicidmfmwhgiTUTX84EZx6Hr+aD7GbueD2pkXEmbQyUHgaf23T61WSZJmoE2xf0F4BkRcVpEHAtcDHx4srEkSYMMPVSSmQ9HxBuBjwNrgH/MzDsnmOmoD7dMWNfzgRnHoev5oPsZu54PamR8lKEfTkqSusVvTkpSMRa3JBUz8+KOiKsi4isR8aWI+I+IOGnAuJl87T4ifjsi7oyIn0TEwNOGIuItzbgvR8QHIuJxHcx4UkTsaB7v/RFxVtcyNmPXRMQXI+KGLuWLiKdGxM6I2NeMvXxa+dpmbMbN6rnyhIi4OSK+1vz35AHj/qL5/9gfEX8TEdHBjL8YETc1GfdFxIZpZWxj5sUN3AyckZnPBv4LeNvhA2b8tfsvA78JfHrQgIhYD7wZWMjMM+h9iHvxdOIBLTI2rgY+lpm/DDwH2D/pYH3aZgS4nOlmg3b5HgauyMzTgRcAfzDlf/6hzd/iLJ8r24BPZuYzgE82tw/P90LgbODZwBnArwIvnVK+Vhkb/wRclZnPovft8e9OKV8rMy/uzLwpMx9ubt5K7zzxw83sa/eZuT8z23wLdC1wfESsBU4Avj3ZZD/VJmNErANeArynWeehzLx/Gvma+2v1OEbEqcAW4JrJp/qpNvky81Bm3t7M/4jei8v6aeRr7rPNYzjLf6Li5cD7mvn3Aa9YYUwCjwOOBY4DjgG+M5V0PUMzNi90azPzZoDMXMrM/55exOFmXtyH+T3goyssXw98q+/2Aab4hBkmMw8CfwncAxwCHsjMm2ab6lFOA74HvLc5DHFNRJw461Ar+GvgrcBPZh1kNc1b518BbpttkkeZ5XNlPjMPNfP3AvOHD8jMzwE76T1PDgEfz8xpvrsamhH4JeD+iLi+ea5c1byT6YyxfeV9NRHxCeAXVvjR2zPzP5sxb6f3VvS6aWTq1ybfkPVPpvdKfhpwP/DvEXFJZr6/Kxnp/a6fB7wpM2+LiKvpvU18R1cyRsSFwHczc09EbBpXrnHl69vOHPBB4A8z84fjytdseywZJ2W1fP03MjMj4lHnGkfE04Fn8dN31jdHxIsz8zNdyUjvufJiei/M9wD/ClxG8261C6ZS3Jl53mo/j4jLgAuBc3PlE8sn+rX7YflaOA/4ZmZ+DyAirgdeCIytuMeQ8QBwIDMf2UPcweDjeyMZQ8azgYsi4gJ6b6d/PiLen5mXHH26seQjIo6hV9rXZeb1R5/qZ40h48yeKxHxnYh4cmYeiogns/Jx4VcCt2bmUrPOR4GzgLEV9xgyHgDuyMy7mnU+RO8zjc4U98wPlUTE+fTeGl+0ynGkrn/t/h7gBRFxQvMJ+blM/8O1VWXmvcC3IuKZzaJzgX0zjPQomfm2zDw1MzfQ+x3fMq7SHofmd/seYH9mvnvWeQaY5XPlw8ClzfylwErvEO4BXhoRa5sXwZcy3edKm4xfAE6KiEf+pb5z6Nhzhcyc6QR8nd4xuTua6e+b5U8BPtI37gJ6Z518g97bxmnleyW9V+D/ofchyscH5PtT4Cv0Pvn/Z+C4DmZ8LrAb+BLwIeDkrmXsG78JuKFL+YAX0ftw7Ut9f68XdCljc3tWz5Un0jtT42vAJ4AnNMsXgGua+TXAP9Ar633Au6eVr23G5vavN7/nvcC1wLHTzDls8ivvklTMzA+VSJKOjMUtScVY3JJUjMUtScVY3JJUjMUtScVY3JJUzP8Dcv9WLKbd70kAAAAASUVORK5CYII="
},
"execution_count": 93,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"Fridays.hist(bins = 100, range = (-2 , -0.5))"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([[]],\n",
" dtype=object)"
]
},
"execution_count": 94,
"metadata": {
},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFNtJREFUeJzt3X+QJGd93/H3NxI/Tqx9kpC1xifCUmWiQN0C8W0cxA+zi7Aj61QIJw6BCKxzcF1VEsuK6xJFFOVy5Q9XlCjCJnaqnCvAUoKidSxkQyRsJMOtZVdJsu+wwgodNhhfiTukO1RChxerQjZ888f2imXZ3enp7plpnrxfVVM30/N092dndz7b0zvzXGQmkqTvfn9j0gEkSd2w0CWpEBa6JBXCQpekQljoklQIC12SCmGhS1IhLHQVLyKWIuKrEfG8Tct/OCI+HhFPR8RTEfHHEfHT1X3zEXFym239zLiyS8Ow0FW0iJgB3gAk8JYNyy8DPgX8AfCDwAuBfwb8+NhDSh2x0FW6nwIeBG4Frt2w/Gbgtsz895n5ZK45lplvm0RIqQsWukr3U8Dt1eXvR8R0RJwHXAbcOdFkUscsdBUrIl4PvAT4H5l5DPgL4J8AF7D2s//4gE38QHV+/dkL8PqRhpZasNBVsmuBezPzyer2f6+WfRX4JvCiAet/OTPP33gB/mh0caV2zp10AGkUImIX8DbgnIh4olr8POB84GXAA8A/BI5MJqHUPY/QVaq3Av8XeAXw6urycuAPWTuvfgNwICL+dUS8ECAiXhURixPKK7VmoatU1wK/kZmPZeYT6xfg14BrgD8G3lRdvhgRTwGHgY9PLLHUUvgfXEhSGTxCl6RCWOiSVAgLXZIKYaFLUiHG+j70iy66KGdmZhqt+/Wvf50XvOAF3QbqWN8z9j0f9D9j3/OBGbvQt3zHjh17MjO/b+DAzBzbZd++fdnUkSNHGq87Ln3P2Pd8mf3P2Pd8mWbsQt/yAUezRsd6ykWSCmGhS1IhLHRJKoSFLkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgrhf0En6f9LMzfe8+z1Ezftn2CS7niELkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0SSqEhS5JhRhY6BHxoYg4ExGPbHHfoYjIiLhoNPEkSXXVOUK/Fbhi88KIeDHwY8BjHWeSJDUwsNAz837gqS3u+mXgBiC7DiVJGl6jc+gRcTVwKjP/V8d5JEkNRebgA+yImAHuzsy9EXEecAT4scw8GxEngLnMfHKbdQ8CBwGmp6f3LS4uNgq6srLC1NRUo3XHpe8Z+54P+p+x7/nAjHUtnzr77PXZPbu/7b4+5NtoYWHhWGbODRyYmQMvwAzwSHV9FjgDnKguq6ydR//+QdvZt29fNnXkyJHG645L3zP2PV9m/zP2PV+mGet6yb+5+9nLZn3ItxFwNGt09dDzoWfmMnDx+u1BR+iSpPGo87bFO4AHgEsj4mREvHv0sSRJwxp4hJ6Z7xhw/0xnaSRJjflJUUkqhIUuSYWw0CWpEBa6JBXCQpekQljoklQIC12SCmGhS1Ihhv7ov6R+mrnxHgAOza4yP9koja1/DQAnbto/8e18t/EIXZIKYaFLUiEsdEkqhIUuSYWw0CWpEBa6JBXCQpekQljoklQIC12SCmGhS1Ih6vwn0R+KiDMR8ciGZTdHxOci4jMR8dsRcf5oY0qSBqlzhH4rcMWmZfcBezPzlcCfA+/pOJckaUgDCz0z7wee2rTs3sxcrW4+CFwygmySpCFEZg4eFDED3J2Ze7e4738Cv5mZH95m3YPAQYDp6el9i4uLjYKurKwwNTXVaN1x6XvGvueD/mfsc77lU2cBmN4FF1+4e8JpdnbmqbOcfmbt+uyeb2Vd/xo2L69j47rbqbuvvn2fFxYWjmXm3KBxrabPjYj3AqvA7duNyczDwGGAubm5nJ+fb7SvpaUlmq47Ln3P2Pd80P+Mfc53YMP0uW/racZ1v3r7R7llea1+Tlwz/+zyAxunvd2wvI6N626n7r76/H3eSeNCj4gDwFXA5VnnMF+SNFKNCj0irgBuAN6YmX/dbSRJUhN13rZ4B/AAcGlEnIyIdwO/BnwPcF9EPBwRvz7inJKkAQYeoWfmO7ZY/MERZJEkteAnRSWpEBa6JBXCQpekQljoklQIC12SCmGhS1IhLHRJKoSFLkmFaDU5lyS1NVNjUq1R72vj8hM37R9XnM55hC5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUuSYWw0CWpEHX+k+gPRcSZiHhkw7ILI+K+iPh89e8Fo40pSRqkzhH6rcAVm5bdCHwyM18GfLK6LUmaoIGFnpn3A09tWnw1cFt1/TbgrR3nkiQNKTJz8KCIGeDuzNxb3X46M8+vrgfw1fXbW6x7EDgIMD09vW9xcbFR0JWVFaamphqtOy59z9j3fND/jH3Ot3zqLADTu+DiC3dPOM3Ozjx1ltPP7Dxmds9wX8P619/W7J7dvfs+LywsHMvMuUHjWk+fm5kZEdv+VsjMw8BhgLm5uZyfn2+0n6WlJZquOy59z9j3fND/jH3Od6CaAvbQ7Cpv62nGdb96+0e5ZXnn+jlxzfxQ2zzQ0TS8J66Z7/X3eSdN3+VyOiJeBFD9e6a7SJKkJpoW+seAa6vr1wIf7SaOJKmpOm9bvAN4ALg0Ik5GxLuBm4AfjYjPA2+ubkuSJmjgOfTMfMc2d13ecRZJUgt+UlSSCmGhS1IhLHRJKoSFLkmFsNAlqRAWuiQVwkKXpEJY6JJUiNaTc0lSHTMbJs86NDvBIAXzCF2SCmGhS1IhLHRJKoSFLkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgrRqtAj4ucj4rMR8UhE3BERz+8qmCRpOI0LPSL2AD8HzGXmXuAc4O1dBZMkDaftKZdzgV0RcS5wHvDl9pEkSU1EZjZfOeJ64JeAZ4B7M/OaLcYcBA4CTE9P71tcXGy0r5WVFaamphpnHYe+Z+x7Puh/xj7nWz51FoDpXXDxhbt3HAMwu2frMduN36jOujutP70LTj+z87p19zFoX8Oa3bO7d9/nhYWFY5k5N2hc40KPiAuAjwD/GHga+C3gzsz88HbrzM3N5dGjRxvtb2lpifn5+UbrjkvfM/Y9H/Q/Y5/zrc9meGh2leuuuXrHMQAnbtpfe5ub1Vl3p/UPza5yy/LOk73W3cegfQ3rxE37e/d9johahd7mlMubgb/MzK9k5v8B7gJe22J7kqQW2hT6Y8BrIuK8iAjgcuB4N7EkScNqXOiZ+RBwJ/BpYLna1uGOckmShtTqfyzKzF8EfrGjLJKkFvykqCQVwkKXpEJY6JJUCAtdkgphoUtSISx0SSqEhS5JhbDQJakQrT5YJGmyupqQqs1+h51ES6PjEbokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUuSYWw0CWpEBa6JBXCQpekQrQq9Ig4PyLujIjPRcTxiLisq2CSpOG0ncvl/cDvZeZPRsRzgfM6yCRJaqBxoUfEbuBHgAMAmfkN4BvdxJIkDSsys9mKEa8GDgOPAq8CjgHXZ+bXN407CBwEmJ6e3re4uNhofysrK0xNTTVad1z6nrHv+aD/GdvkWz519tnrs3t2Nx6z3fh107vg4gtHt/3NdtrOdutP74LTzwzc9Jb7qJOpjdk9u3v3c7iwsHAsM+cGjWtT6HPAg8DrMvOhiHg/8LXM/IXt1pmbm8ujR4822t/S0hLz8/ON1h2Xvmfsez7of8Y2+epMOTvstLRbTZ97aHaV6665emTb32yn7Wy3/qHZVW5Zrn+CYOM+Rj1l8Imb9vfu5zAiahV6mz+KngROZuZD1e07gR9qsT1JUguNCz0znwC+FBGXVosuZ+30iyRpAtq+y+U64PbqHS5fBH66fSRJUhOtCj0zHwYGnteRJI2enxSVpEJY6JJUCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFaLtJ0Ul7WDUE0m1MexEXXW2U4KZG+/h0OwqB268p9XjMgkeoUtSISx0SSqEhS5JhbDQJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiFaF3pEnBMRfxoRd3cRSJLUTBdH6NcDxzvYjiSphVaFHhGXAPuBD3QTR5LUVNsj9F8BbgC+2UEWSVILkZnNVoy4CrgyM/95RMwD/yozr9pi3EHgIMD09PS+xcXFRvtbWVlhamqq0brj0veMfc8H/c84bL7lU2cHjpnds3vL8dstH2R6F1x84e4t79tuOxv3VWd8W9O74PQz9cc3fSyaWs+33eMybgsLC8cyc27QuDaF/u+AdwGrwPOB7wXuysx3brfO3NxcHj16tNH+lpaWmJ+fb7TuuPQ9Y9/zQf8zDpuvztSyG6do3W5K22GmqD00u8p111w9VJ7tpokd1dS4h2ZXuWW5/uzdTR+Lptbz9WX63IioVeiNT7lk5nsy85LMnAHeDnxqpzKXJI2W70OXpEJ08j8WZeYSsNTFtiRJzXiELkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0SSpEJx8sUlk2z5XRl/ks1tWZ76RN5p22f2h2lQPV/V3te9Rzk9TZfleP3aiMY/6WEniELkmFsNAlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0SSqEhS5JhbDQJakQjQs9Il4cEUci4tGI+GxEXN9lMEnScNrM5bIKHMrMT0fE9wDHIuK+zHy0o2ySpCE0PkLPzMcz89PV9b8CjgN7ugomSRpOZGb7jUTMAPcDezPza5vuOwgcBJient63uLjYaB8rKytMTU0BsHzq7JZjZvfsHmqbm7fTZv3ZPbufzbh5+SgN81hsfAyH2Wadr2G7r3nYx6JOxjr72qjOmLqmd8HpZ3beblf7a7qdjRn7qu8Z1/ON+vlb18LCwrHMnBs0rnWhR8QU8AfAL2XmXTuNnZuby6NHjzbaz9LSEvPz88D2U2m2nba0zfonbtr/bMZxTkU6zGOx8TEcZpt1voauprStk7HOvjaqM6auQ7Or3LJ87o7b7Wp/TbezMWNf9T3jer6+TCUcEbUKvdW7XCLiOcBHgNsHlbkkabTavMslgA8CxzPzfd1FkiQ10eYI/XXAu4A3RcTD1eXKjnJJkobU+CRWZv4REB1mkSS14CdFJakQFrokFcJCl6RCWOiSVAgLXZIKYaFLUiEsdEkqhIUuSYXo7+w4myyfOsuBARMUtZ0gqc2kWjM33sOh2dUdMw67/bZ5Bq07jsdl2O3U+T5vt802Y5rYbrtd7W9UuVUuj9AlqRAWuiQVwkKXpEJY6JJUCAtdkgphoUtSISx0SSqEhS5JhbDQJakQFrokFaJVoUfEFRHxZxHxhYi4satQkqThNS70iDgH+M/AjwOvAN4REa/oKpgkaThtjtB/GPhCZn4xM78BLAJXdxNLkjSsyMxmK0b8JHBFZv5MdftdwN/LzJ/dNO4gcLC6eSnwZw2zXgQ82XDdcel7xr7ng/5n7Hs+MGMX+pbvJZn5fYMGjXz63Mw8DBxuu52IOJqZcx1EGpm+Z+x7Puh/xr7nAzN2oe/5ttPmlMsp4MUbbl9SLZMkTUCbQv8T4GUR8dKIeC7wduBj3cSSJA2r8SmXzFyNiJ8FPgGcA3woMz/bWbLv1Pq0zRj0PWPf80H/M/Y9H5ixC33Pt6XGfxSVJPWLnxSVpEJY6JJUiN4WekTcHBGfi4jPRMRvR8T524yb2PQDEfGPIuKzEfHNiNj2LU4R8fPVuEci4o6IeH7P8p0fEXdWj/fxiLhsHPmGyViNPSci/jQi7u5Tvoh4cUQciYhHq7HXjytf3YzVuEk+Vy6MiPsi4vPVvxdsM+4/VF/L8Yj4TxERPcv3NyPi3irfoxExM458dfW20IH7gL2Z+Urgz4H3bB7Qg+kHHgH+AXD/dgMiYg/wc8BcZu5l7Q/Ibx9PvMH5Ku8Hfi8z/zbwKuD4qINtUDcjwPWMNxvUy7cKHMrMVwCvAf5FD38OJ/1cuRH4ZGa+DPhkdXtzxtcCrwNeCewF/i7wxr7kq/xX4ObMfDlrn5Y/M6Z8tfS20DPz3sxcrW4+yNr73Deb6PQDmXk8M+t88vVcYFdEnAucB3x5tMnW1MkXEbuBHwE+WK3zjcx8ehz5qv3Vegwj4hJgP/CB0af6ljr5MvPxzPx0df2vWPuls2cc+ap91nkMJz1Vx9XAbdX124C3bjEmgecDzwWeBzwHOD2WdDXyVb8Az83M+wAycyUz/3pM+WrpbaFv8k+B391i+R7gSxtun2SMT6Q6MvMU8B+Bx4DHgbOZee9kU32blwJfAX6jOp3xgYh4waRDbeFXgBuAb046yE6ql+B/B3hoskm+w6SfK9OZ+Xh1/QlgevOAzHwAOMLa8+Rx4BOZOa5XZAPzAX8LeDoi7qqeKzdXr3x6Y+Qf/d9JRPw+8P1b3PXezPxoNea9rL2kvX2c2dbVyThg/QtY++3/UuBp4Lci4p2Z+eE+5GPtZ+CHgOsy86GIeD9rLzd/oYt8XWSMiKuAM5l5LCLmu8rVVb4N25kCPgL8y8z8Wlf5qm13knGUdsq48UZmZkR8x/ulI+IHgZfzrVfj90XEGzLzD/uQj7XnyhtY+4X9GPCbwAGqV7d9MNFCz8w373R/RBwArgIuz63fMD/y6QcGZazhzcBfZuZXACLiLuC1QCeF3kG+k8DJzFw/oryT7c8fNtJBxtcBb4mIK1l7Sf69EfHhzHxn+3Sd5CMinsNamd+emXe1T/XtOsg40edKRJyOiBdl5uMR8SK2Pvf8E8CDmblSrfO7wGVAJ4XeQb6TwMOZ+cVqnd9h7W8mvSn03p5yiYgrWHuJ/ZYdzlN9N0w/8Bjwmog4r/qL/eWM/w9728rMJ4AvRcSl1aLLgUcnGOk7ZOZ7MvOSzJxh7Xv8qa7KvAvV9/WDwPHMfN+k82xj0s+VjwHXVtevBbZ6VfEY8MaIOLf6BflGxvdcqZPvT4DzI2J91sM30bPnCpnZywvwBdbO+T1cXX69Wv4DwMc3jLuStXfB/AVrLz/HmfEnWPut/b9Z++PNJ7bJ+G+Bz7H2boT/BjyvZ/leDRwFPgP8DnBB3x7DDePngbv7lA94PWt/0PvMhp/XK/uUsbo9yefKC1l798jngd8HLqyWzwEfqK6fA/wX1kr8UeB9fcpX3f7R6vu8DNwKPHecj+Ogix/9l6RC9PaUiyRpOBa6JBXCQpekQljoklQIC12SCmGhS1IhLHRJKsT/A90gk+zxVhPjAAAAAElFTkSuQmCC"
},
"execution_count": 94,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"Tuesdays.hist(bins = 100, range = (-2 , -0.5))"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 95,
"metadata": {
},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD8CAYAAACYebj1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xmc3XV97/HXZ/Z9JrMlM5kkE8gEGCIoDCgFNKK0gIC1thZaUdRKRVEfbR/tpdqqtfW2V++jm9WrePGiVkORVoyaSlV2RSCBCiSQhWyzZJl9JrMvn/vHOWcyCZOZM8vv/H4z834+HnnMOb/zO+d8cjKZ93zXn7k7IiIiAGlhFyAiItGhUBARkQkKBRERmaBQEBGRCQoFERGZoFAQEZEJCgUREZmgUBARkQkKBRERmZARdgGzVV5e7rW1tWGXISKyqOzYsaPN3StmOm/RhUJtbS3bt28PuwwRkUXFzA4lc566j0REZIJCQUREJigURERkwqIbUxARmY+RkRGampoYHBwMu5RA5OTkUFNTQ2Zm5pyer1AQkWWlqamJwsJCamtrMbOwy1lQ7k57eztNTU2sX79+Tq8RWPeRmX3dzI6b2YtneNzM7J/NbJ+ZPW9mFwVVi4hIwuDgIGVlZUsuEADMjLKysnm1goIcU7gHuGaax68F6uJ/bgP+T4C1iIhMWIqBkDDfv1tgoeDujwEd05zyduCbHvNLoMTMqoKqR0RS58TQKF97bD9PvtIedikyS2HOPloNNE663xQ/JiKL2Pi48567n+Jz217ilrufYvvB6X43XL4eeOABzIyXX3554tiePXu47rrrqKur46KLLuJd73oXx44d45FHHuH6668/5fm33nor999//4LXtSimpJrZbWa23cy2t7a2hl2OiEzjB8+38OzhLv7y+noqC7P5/IO7wy4pkrZs2cIVV1zBli1bgNhYx9ve9jZuv/129u7dy7PPPsuHP/xhUv0zL8xQaAbWTLpfEz/2Ku5+l7s3uHtDRcWMW3eISIi+/dRhasvyeP/ltbzv8vU8faCDvcd6wy4rUk6cOMETTzzB3Xffzb333gvAd77zHS677DJuuOGGifM2b97Mpk2bUlpbmFNStwJ3mNm9wOuBbnc/EmI9IjJPx3sHefpAB39y9UbMjBsurOZz217iJy8do25lYdjlvcpf/WAnu1p6FvQ166uL+PQN5097zve//32uueYaNm7cSFlZGTt27ODFF1/k4osvPuNzHn/8cV772tdO3D98+PCrupQWQmChYGZbgM1AuZk1AZ8GMgHc/SvANuA6YB/QD7wvqFpEJDWe2NsGwJvPrQRgVXEOm1YX8cjuVj68eUOYpUXKli1b+PjHPw7ATTfdNNGFNJ0rr7ySH/7whxP3b7311kBqCywU3P3mGR534CNBvb+IpN7je9soy8+ivqpo4tiltWV85+lDjIyNk5kerWHMmX6jD0JHRwcPPfQQL7zwAmbG2NgYZsanP/1pHn300ZTXc7po/QuJyKLl7vx8XxuXbygnLe3kXPnXrS1hcGSc3Uc1rgBw//33c8stt3Do0CEOHjxIY2Mj69evZ8OGDfziF7/gRz/60cS5jz32GC++OOX638AoFERkQbR0D3K8d4iG2hWnHH/d2hIAnjvcGUZZkbNlyxbe8Y53nHLsne98J/feey8//OEP+eIXv0hdXR319fV8+ctfJtWTa7T3kYgsiOcbuwC4oKbklOOrS3KpKMzmucYubrksjMqi5eGHH37VsY997GMTt3/84x+/6vGVK1eyefPmU47dc889C10aoJaCiCyQXzV1k5lunFd16iwjM+O8qiL2aFrqoqBQEJEF8XxTF+dVFZGdkf6qx+oqC9h3/ATj4x5CZTIbCgURmTd3Z9eRHs6vLpry8Y0rCxgcGae5ayDFlU0tNvlxaZrv302hICLz1nZimK7+ETaeYYHahsrY8b3Hw+9CysnJob29fUkGQ+J6Cjk5OXN+DQ00i8i8JbaxqKs8UygUALDn2AmuOndlyuqaSk1NDU1NTSnfUyhVEldemyuFgojMW2IQeePKgikfL87NpLIwm1eOn0hlWVPKzMyc81XJlgN1H4nIvO05foLi3EwqCrPPeM66sjwOd/SnsCqZC4WCiMzb3mO9bFxZMO1Vv9aU5tGoUIg8hYKIzIu7s+fYiRl3QV1bmseRnkGGRsdSVJnMhUJBROalvW+Y7oER6iqnHk9IWFuahzs0dUZjWqpMTaEgIvNyqL0PgNqy/GnPW1uaB6BxhYhTKIjIvBxsi/2QX1eWN+15a+OPa1wh2hQKIjIvhzr6STOoWTF9KFQUZJOdkabuo4hTKIjIvBxq72P1ilyyMqb/cWJmVBXn0BKRrS5kagoFEZmXg+39rCudfjwhYVVxDke7BwOuSOZDoSAi83KovW/G8YSE6uJcjigUIk2hICJz1t0/Qlf/yIwzjxJWFedwrGeQMW2hHVkKBRGZs0Mdsemoa5NsKVSV5DI67rSdGAqyLJkHhYKIzNnB9tj00mRbCtXFsS2dNdgcXQoFEZmzQ23xlkJpci2FVfFQ0GBzdCkURGTOGjv7qSzMJjfr1ZfgnEp1cS4ALQqFyFIoiMictXQNsnpFbtLnl+Rlkp2RxtFudR9FlUJBROaspWuA6pLkQ8HMqC7JVUshwhQKIjIn7k5z1wCrZxEKACuLsjneo1CIKoWCiMxJR98wQ6PjEzOKklVRmMPxXk1JjSqFgojMSUtX7Lf92XQfAVQWZtOqUIgshYKIzElzfK3BbEOhojCb/uExTgyNBlGWzJNCQUTmJLEAbbZjCpWF2QBqLURUoKFgZteY2W4z22dmd07x+Foze9jMnjOz583suiDrEZGF09I1QG5mOiV5mbN6XkU8FDTYHE2BhYKZpQNfAq4F6oGbzaz+tNP+ArjP3V8H3AR8Oah6RGRhtXQPUF2Sg5nN6nmVhbGB6VbtfxRJQbYULgX2uft+dx8G7gXefto5DhTFbxcDLQHWIyILqLlrcNbjCXCypaDuo2gKMhRWA42T7jfFj032GeDdZtYEbAM+OtULmdltZrbdzLa3trYGUauIzFLLHNYoAJTkZpKRZpqWGlFhDzTfDNzj7jXAdcC3zOxVNbn7Xe7e4O4NFRUVKS9SRE41NDpGa+8QVcWzD4W0NKNC01IjK8hQaAbWTLpfEz822QeA+wDc/UkgBygPsCYRWQCJXU6rS2a3cC2hojBbLYWICjIUngHqzGy9mWURG0jeeto5h4G3AJjZecRCQf1DIhHXPMfpqAlawBZdgYWCu48CdwAPAi8Rm2W008w+a2Y3xk/7E+CDZvYrYAtwq7vrOn0iETfX1cwJse4jTUmNoowgX9zdtxEbQJ587FOTbu8CLg+yBhFZeImFa6tmue9RQkVhDu19w4yOjZORHvbQpkymfw0RmbWWrgHKC7LJyUzu4jqnqyjMxh3a+4YXuDKZL4WCiMxabMvsubUSACoKEquaNa4QNQoFEZm12V5c53SJBWxtfQqFqFEoiMisuDstc1zNnFCWnwVA+wl1H0WNQkFEZqWrf4SBkbH5hUJBLBQ61FKIHIWCiMzKyTUKcx9TKMjOICsjTS2FCFIoiMistMzx4jqTmRll+VmafRRBCgURmZWFCAWIdSG1a/vsyFEoiMistHQPkpWRNjFYPFdl+dlqKUSQQkFEZqU5vmX2bC+uc7qy/CyNKUSQQkFEZiW2RmHug8wJZQVZtPcNoe3OokWhICKz0tI1QPUcrqNwutL8bAZHxukfHluAqmShKBREJGnDo+Mc7x2a9yAzTF6roC6kKFEoiEjSjvUM4j736yhMVh4PhTbNQIoUhYKIJK15gaajQqz7CLTVRdQoFEQkaSfXKCzAQHO+uo+iSKEgIklbqIVrcHJMQTulRotCQUSS1tw1SFl+1pwvrjNZXlYGuZnp6j6KGIWCiCTtSPf8rqNwurKCLHUfRYxCQUSStlAL1xLKCrI1+yhiFAoikhR3p7lzgVsK2uoichQKIpKUnsFR+obHFmSNQkJZvrqPokahICJJWciZRwllBdna/yhiFAoikpRAQiE/i5Exp3dodMFeU+ZHoSAiSVnIhWsJibUKGleIDoWCiCSluWuQrPQ0yuPbUyyEsoLEVheagRQVCgURSUpL1wBVJTmkpc3v4jqTJba60BXYokOhICJJWajrKEym7qPoUSiISFJiC9cWNhRKJzbFU/dRVCgURGRGo2PjHO0ZZPUCDjIDZGekU5CdQZtaCpERaCiY2TVmttvM9pnZnWc4511mtsvMdprZd4KsR0Tm5mjPIOMOVQvcUgDtfxQ1GUG9sJmlA18CrgaagGfMbKu775p0Th3w58Dl7t5pZpVB1SMic9fSNQgszBXXTleqVc2REmRL4VJgn7vvd/dh4F7g7aed80HgS+7eCeDuxwOsR0TmqLmrH4DVKwJoKeRnaVO8CAkyFFYDjZPuN8WPTbYR2GhmPzezX5rZNQHWIyJz1NwZW7imlsLSF1j30Szevw7YDNQAj5nZa9y9a/JJZnYbcBvA2rVrU12jyLK3kBfXOV1ZQTYdfcO4O2YLtwZC5ibIlkIzsGbS/Zr4scmagK3uPuLuB4A9xELiFO5+l7s3uHtDRUVFYAWLyNSauwYC6TqCWPfR6LjTM6D9j6IgqVAws/8ws7eZ2WxC5BmgzszWm1kWcBOw9bRzHiDWSsDMyol1J+2fxXuISAo0d/YH0nUEJ9cqtGutQiQk+0P+y8DvAXvN7O/M7JyZnuDuo8AdwIPAS8B97r7TzD5rZjfGT3sQaDezXcDDwJ+6e/us/xYiEhh3p6VrcMEXriUk9j/SuEI0JDWm4O4/BX5qZsXAzfHbjcDXgH9195EzPG8bsO20Y5+adNuBP47/EZEI6uwfYWBkYS+uM5n2P4qWpLuDzKwMuBX4A+A54J+Ai4CfBFKZiETCxMyjgMYUJrqPtKo5EpJqKZjZ94BzgG8BN7j7kfhD/2Zm24MqTkTC19wV3HRU0P5HUZPslNSvxbuCJphZtrsPuXtDAHWJSEQEHQo5mbH9j9R9FA3Jdh/9zRTHnlzIQkQkmpo7B8jLSqckLzOw9yjNz1L3UURM21Iws1XEViHnmtnrgMTKkiIgL+DaRCQCEltmB7mwTJviRcdM3Ue/QWxwuQb4+0nHe4FPBFSTiERIc9dAYF1HCWX5WTTHN92TcE0bCu7+DeAbZvZOd//3FNUkIhHS3DXAptXFgb5HaX4Wzzd1B/oekpyZuo/e7e7/CtSa2avWErj730/xNBFZIgaGx+joG6YmoOmoCaX52XT2a/+jKJip+yg//rUg6EJEJHqCnnmUUF6QxciY0zM4SnFucAPaMrOZuo++Gv/6V6kpR0SiJBEKQW1xkXByrcKwQiFkyW6I93kzKzKzTDP7mZm1mtm7gy5ORMLV0hXsauaEk6uatYAtbMmuU/h1d+8BrgcOAhuAPw2qKBGJhqbOftLTjJWF2YG+T3l8UzwtYAtfsqGQ6GZ6G/Bdd9c0AZFloLFjgOqSHDLSg7z0yqndRxKuZLe5+KGZvQwMALebWQWgScUiS9zhjn7Wlga/TlXdR9GRVPy7+53ArwEN8W2y+4C3B1mYiISvqTM1oaD9j6JjNtdoPpfYeoXJz/nmAtcjIhHRNzRK24lh1qQgFCDWWlD3UfiS3Tr7W8DZwH8DY/HDjkJBZMlq7OwHYM2K1IWCNsULX7IthQagPn6lNBFZBg63x0IhFd1HENv/qKVbQ5VhS3ZKwYvAqiALEZFoaYxfcS1loVCQpQvtRECyLYVyYJeZPQ1M/Ku5+42BVCUioWvs6KcgOyPQ6yhMVpqfTUef9j8KW7Kh8JkgixCR6Dnc0c+a0ryU/YAuy9f+R1GQVCi4+6Nmtg6oc/efmlkekB5saSISpsaOfs6qyJ/5xAVSVqD9j6Ig2b2PPgjcD3w1fmg18EBQRYlIuNw9ZQvXEk6uata4QpiSHWj+CHA50APg7nuByqCKEpFwtfYOMTQ6nrI1CgBl+bH9j9o0LTVUyYbCkLtP/EvFF7BpeqrIEjWxRiGVoVCg/Y+iINlQeNTMPgHkmtnVwHeBHwRXloiE6VCK1yiANsWLimRD4U6gFXgB+ENgG/AXQRUlIuE60NZHepqlbDUzxPY/ys9Kp02b4oUq2dlH42b2APCAu7cGXJOIhGx/Wx9rVuSSlRHsltmnKy3Q/kdhm/Zf3GI+Y2ZtwG5gd/yqa59KTXkiEoYDrX2sL0/ddNSEsvgCNgnPTL8G/BGxWUeXuHupu5cCrwcuN7M/Crw6EUk5d+dAWx/rywtS/t5l+VmafRSymULhFuBmdz+QOODu+4F3A++Z6cXN7Boz221m+8zszmnOe6eZuZk1JFu4iATjWM8QAyNjrE/hwrWE2PbZGlMI00yhkOnubacfjI8rTLvk0MzSgS8B1wL1wM1mVj/FeYXAx4Gnki1aRIKzv+0EAGeF0X1UcHL/IwnHTKEwXTtupjbepcA+d98fX+NwL1Nfre2vgf+FLu8pEgkH2voAQhpTOLn/kYRjplC40Mx6pvjTC7xmhueuBhon3W+KH5tgZhcBa9z9R7OuXEQCcaC1j5zMNFYV5aT8vbVWIXzTTkl198A2vTOzNODvgVuTOPc24DaAtWvXBlWSiBBrKdSW5ZOWlvrtq0+uah4KpaUiyS9em4tmYM2k+zXxYwmFwCbgETM7CLwB2DrVYLO73+XuDe7eUFFREWDJInKgrS+lu6NOpv2PwhdkKDwD1JnZejPLAm4CtiYedPdudy9391p3rwV+Cdzo7tsDrElEpjEyNs7hjv7QfksvL4y1FLSqOTyBhYK7jwJ3AA8CLwH3uftOM/usmemKbSIR1NQ5wOi4U1sWUigUxFoKrb0KhbAke+W1OXH3bcT2SZp8bMrV0O6+OchaRGRme471AlC3sjCU989MT6M0P4vjCoXQpHZjExGJtL2JUKhM/WrmhMrCbLUUQqRQEJEJu4+doGZFLvnZgXYiTKtCoRAqhYKITNh7rJeNIXUdJVQUKBTCpFAQEQBGx8bZ39pH3crwuo4AKopioaCtLsKhUBARAA629zM8Ns7GyvBbCsNj43QPjIRax3KlUBAR4OTMo7C7jyrj22uoCykcCgURAWKhYAYbQpx5BLGWAigUwqJQEBEgFgprS/PIzQpsy7OkVBTGQkFrFcKhUBARAHa29FBfVRR2GVQWqaUQJoWCiNA9MMKh9n42rS4OuxQKszPIzkjjeK8usRIGhYKIsKulB4Dzq8NvKZgZlUVaqxAWhYKIsLOlG4Dzq8NvKUB8AZt2Sg2FQkFEeLG5m1VFORODvGGrLMzheI9CIQwKBRHhxZYeNq0Ov+sooaJQLYWwKBRElrn+4VFeaT0Rma4jiIVCV/8IQ6NjYZey7CgURJa5nS09uBOJmUcJlYWalhoWhYLIMrf9YCcAF60tCbmSk1bGt7o4pnGFlFMoiCxzOw51cFZ5PmUF0RhkBqgqiYXC0W6tVUg1hYLIMubu7DjUycXrVoRdyimqinIBONI9EHIly49CQWQZ29/WR2f/SORCoSg3g7ysdI6opZByCgWRZWxHfDyhoTZaoWBmrCrOUUshBAoFkWVs+6EOSvIyOas83O2yp1JdnKuWQggUCiLLlLvzi1fauaS2lLQ0C7ucV1lVnMORLoVCqikURJapQ+39NHUO8Ma68rBLmVJ1cQ7HewcZHRsPu5RlRaEgskw9vq8NgCvqKkKuZGqrinMZd11sJ9UUCiLL1ON7WqlZkUttWV7YpUwpsVZB4wqppVAQWYaGR8d58pV2rqwrxyx64wkAVcWJUNAMpFRSKIgsQ794pY3eoVGurl8ZdilnVFUcW8CmVc2ppVAQWYYe3HmUguwMfu3saA4yAxTlxBawtWgGUkopFESWmbFx5792HuPN51aSk5kedjlnZGZUaQFbyikURJaZJ19pp71vmGvOXxV2KTOqWZFHU6dCIZUCDQUzu8bMdpvZPjO7c4rH/9jMdpnZ82b2MzNbF2Q9IgL3bW+kODeTt5xXGXYpM1pTmsvhjv6wy1hWAgsFM0sHvgRcC9QDN5tZ/WmnPQc0uPsFwP3A54OqR0Sgu3+EH+88ym++tjrSXUcJa0vz6B4YoXtgJOxSlo0gWwqXAvvcfb+7DwP3Am+ffIK7P+zuiV8DfgnUBFiPyLL33R2NDI+O8zsNa8IuJSlrVsTWUDSqtZAyQYbCaqBx0v2m+LEz+QDwnwHWI7KsDY+Oc/cTB7h0fWmkLr05nTWlsVBo6lQopEokBprN7N1AA/CFMzx+m5ltN7Ptra2tqS1OZInY+qsWjnQPcvvms8MuJWmJUGjs0GBzqgQZCs3A5DZqTfzYKczsrcAngRvdfcpNTtz9LndvcPeGiopo7tMiEmUDw2P8w0/2sGl1EZs3Lp7/Q8W5mRTlZGiwOYWCDIVngDozW29mWcBNwNbJJ5jZ64CvEguE4wHWIrKsffWxV2juGuAv31Yf2W0tzmRNaR6N6j5KmcBCwd1HgTuAB4GXgPvcfaeZfdbMboyf9gWgAPiumf23mW09w8uJyBy90NTNlx7ex/UXVPH6s8rCLmfW1pbmqaWQQhlBvri7bwO2nXbsU5NuvzXI9xdZ7tpPDHHHlmcpL8jmb35zU9jlzMm6snx+9tJxRsfGyUiPxDDokqZPWGSJ6ugb5j1ff5qj3YP8y++9jpK8rLBLmpOzKvIZHhvXyuYUUSiILEE7DnVy4788wd7jJ/jKLRdz8brSsEuas7MrYteP3t92IuRKlodAu49EJHXcnR2HOvn2U4f53nPNVBXn8N0/vIwL15SEXdq8nF2RD8Arx/u46tyQi1kGFAoii1xz1wDfe7aJf3+2mQNtfeRmpvOHbzqLj11VR3724v8vXpKXRVl+Fq+0qqWQCov/O0ZkGRoZG+enu47x7acO8/NX2nCH168v5cObz+ba11RRsATCYLKzKwrY39oXdhnLwtL6zhFZ4kbGxvnu9ia++NBejnQPUl2cw8euquO3L66ZWP27FJ1Vkc9Pdh0Lu4xlQaEgskg8e7iTP7v/efYdP8HF61bwN7+5ic3nVJKetrgWo83F2RUF3NvXSFf/8KKdRbVYKBREIm50bJwv/NduvvbYfqqKc/naexp463mVi25l8nzUrYzNQHr5aC9vWIQL8BYThYJIhPUNjXLHd57l4d2t3HzpWj5x3bkU5mSGXVbK1VcXAbCrpUehEDCFgkhEHe0e5P33PMPuY7187h2b+P3XL98LE1YW5lBekM2uIz1hl7LkKRREImhXSw/vv+cZegdHuPu9DWw+J/qXzgxafXURu1oUCkHTimaRiHlk93F+5yu/AOC7H/o1BUJcfVURe4/3Mjw6HnYpS5pCQSRCvv3UIT7wje2sK8vngY9cPtGXLrGWwsiYs++4FrEFSaEgEgHj487fbnuJT37vRd5YV859H7qMVcU5YZcVKefHA/KF5q6QK1naFAoiIesbGuXD336Wrz62n/dcto6vvadhya1IXghnleezIi+T7Qc7wy5lSdN3nkiImjr7+YNvbGfPsV7+8vp63n957bJafzAbZsbF61aw45BCIUgKBZGQPLG3jY/f+xzDY+P8v/ddypsW0bWTw9JQW8pPXzpO24khyguywy5nSVL3kUiKDY2O8bkf7eLddz/FivwsHvjI5QqEJDWsWwGg1kKA1FIQSaFH97Tyma07OdDWx7vfsJZPXldPblZ62GUtGq+pKSYrI42n9nfwG+evCrucJUmhIJICOw518MWH9vHI7lZqy/K4532XaP3BHGRnpPP69aU8suc4n6I+7HKWJIWCSEC6B0b40fNHuH9HI88e7qI0P4v/cc25vP+KWrIz1DqYq7ecW8lnfrCLA219rC/PD7ucJUehILIA3J1jPUO8dKSHXzV18cTeNp5r7GJs3KmrLOBT19dz06VryMvSf7n5uurclXzmB7t46OXjfOCK9WGXs+ToO1RklkbHxtnf1sfOlm52tfSw60gPLx3ppaNvGAAzuGB1Mbe/6Wyurl/JBTXFmma6gNaW5VFXWcBPdh1VKARAoSAyjf7hUV4+2svOlp5YALR08/LRXobi++9kZaRxzspCrj5vJedVFVJfXcy5VYUULcPtrVPp+guq+cef7aGxo39JX3EuDAoFWZbcnZExZ3hsnOHRcU4MjnK0Z5CjPYMcaO3j5aM97D7ay8H2PsY99pzi3Ezqq4q45Q3rOH91EfVVxZxdkU9GumZ2p9o7L17NP/5sD/fvaOKPrt4YdjlLikJBloz+4VGe2t/BriM97G/t41B7Hx39w3T3j9A7NIq7M+5MfD0TM1hXmsc5qwq54cJq6quLOL+6iNUlueoGioiaFXlcsaGc+3c08dGrNiiYF5BCQRYtd2f3sV4e3d3KY3tbeeZAJ8NjsW6dlUXZ1Jblc15VESW5mRTkZJBuhhmkmWHEun6yMtLISk8jLzuDVUU5rCrOoWZFrgaEF4Fb3rCO2761g62/auG3LqoJu5wlQ9/5sqh09Q/zxL42HtvTyqN7WjnWMwTAOSsLufXyWt5YV8Fr15ZoQ7ll4Or6lZxXVcQ//2wvb7ugStN8F4j+50ikjY07zzd18eieVh7b08p/N3Yx7lCUk8GVdRW8aWMFV24sp6o4N+xSJcXMjDuvPZf3fv1pvvLIfj7+1rqwS1oSFAoSOcd7BmMhsLeNx/e20tU/EpvmWVPCHVfV8aaNFVxYU6x+ZOFNGyu48cJq/vmhvTTUruDyDeVhl7ToBRoKZnYN8E9AOvB/3f3vTns8G/gmcDHQDvyuux8MsiaZvdGxcUbHnbFxZ8ydrPQ0sjPSFmzQtbNvmKcPdvDkK+38fF8be+NX1iovyOYt567kTedUcMWGckrzsxbk/WRp+Z+/9RpePtrD7f+6g7tvvYRLakvDLmlRM/dppmHM54XN0oE9wNVAE/AMcLO775p0zoeBC9z9Q2Z2E/AOd//d6V63oaHBt2/fHkjNy1Xv4AjNXQM0dw5MfG2adL+1d+hVz8lMNwqyMyjIyaAkN4uSvEyKczMpycs87X4WxbmxOftDo2P0DY1xrGeQlu4BDrb18WJzD81dAwDkZKZxSW0pl28o58q6cs6PeOXfAAAFeUlEQVRbVURammb7yMyaOvt5z91P09Q5wEev2sAH33gWOZkaY5jMzHa4e8OM5wUYCpcBn3H334jf/3MAd//bSec8GD/nSTPLAI4CFT5NUQqF5CR+APcNjdI7OErbiSGO9QxyvDf2taVrgOauQZo7++kZHD3luVnpaVSX5LB6RS6rS3KpKs4lOzONdDPS04yh0XFODI3SOzhC7+AoPQMjdA2M0N0f+9rVPzztlM/Ee9SsyKW+uohNq4t57ZoSXre2RIOFMmedfcN88oEX2PbCUYpyMrh2UxVvOLuUDRWFrC3Noyg3Y1lPKU42FILsPloNNE663wS8/kznuPuomXUDZUDbQhdz3zON3PX4fhJ5c8rPLD/ly6vO8YnH/ZT7p99O5rmnHjv9NXzKx6d93dP/Pg5Do+MTUzOnUpKXyaqiHFaX5HJJ7QpWl+ROBMDqFbmU52fP6zf08XHnxPBoLCT6R+gaGCbNjOyMNHIy01lZlENZfpZaAbKgVuRn8eXfv5hnDnbwzScPse3FI/zb9pM/gswgLzOdvOwMMtMMMyMt7eQU5bT4lOUoB8fH31LHDRdWB/oei2Kg2cxuA24DWLt27ZxeY0V+FuesLIy/4ClfEu9xyjE77ZzTH5/8ZIvfefVzpn781NvJPXe6mk5/PDsjnYLsdAqyM8jPzqAgO4PywmxWFuZQWZQdeLM6Lc0oysmkKCeTNerelRS7pLaUS2pLGRt39hzr5VB7P03xFnHfUOzP2PjkhYzx28R+oYmyRFdskIIMhWZgzaT7NfFjU53TFO8+KiY24HwKd78LuAti3UdzKebq+pVcXb9yLk8VkUUoPc04r6qI86qKwi5lUQlyTt8zQJ2ZrTezLOAmYOtp52wF3hu//dvAQ9ONJ4iISLACaynExwjuAB4kNiX16+6+08w+C2x3963A3cC3zGwf0EEsOEREJCSBjim4+zZg22nHPjXp9iDwO0HWICIiydOSUBERmaBQEBGRCQoFERGZoFAQEZEJCgUREZkQ2N5HQTGzVuBQ2HUssHIC2NpjCdDncmb6bM5Mn83U1rl7xUwnLbpQWIrMbHsyG1UtN/pczkyfzZnps5kfdR+JiMgEhYKIiExQKETDXWEXEFH6XM5Mn82Z6bOZB40piIjIBLUURERkgkIhIszso2b2spntNLPPh11P1JjZn5iZm1l52LVEhZl9If4987yZfc/MSsKuKUxmdo2Z7TazfWZ2Z9j1LFYKhQgwszcDbwcudPfzgf8dckmRYmZrgF8HDoddS8T8BNjk7hcAe4A/D7me0JhZOvAl4FqgHrjZzOrDrWpxUihEw+3A37n7EIC7Hw+5nqj5B+DPOO3S2sudu/+Xu4/G7/6S2NUNl6tLgX3uvt/dh4F7if2iJbOkUIiGjcCVZvaUmT1qZpeEXVBUmNnbgWZ3/1XYtUTc+4H/DLuIEK0GGifdb4ofk1kK9CI7cpKZ/RRYNcVDnyT271AKvAG4BLjPzM5aLpcmneGz+QSxrqNlabrPxt2/Hz/nk8Ao8O1U1iZLk0IhRdz9rWd6zMxuB/4jHgJPm9k4sf1bWlNVX5jO9NmY2WuA9cCvzAxi3SPPmtml7n40hSWGZrrvGwAzuxW4HnjLcvkl4gyagTWT7tfEj8ksqfsoGh4A3gxgZhuBLLShF+7+grtXunutu9cS6xK4aLkEwkzM7BpiYy03unt/2PWE7BmgzszWm1kWseu9bw25pkVJLYVo+DrwdTN7ERgG3rvMf+uT5PwLkA38JN6S+qW7fyjcksLh7qNmdgfwIJAOfN3dd4Zc1qKkFc0iIjJB3UciIjJBoSAiIhMUCiIiMkGhICIiExQKIiIyQaEgIiITFAoiIjJBoSAiIhP+P4kejKQasY+9AAAAAElFTkSuQmCC"
},
"execution_count": 95,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"Tuesdays.plot.density()"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ACH | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 376.000000 | \n",
"
\n",
" \n",
" mean | \n",
" -1.202934 | \n",
"
\n",
" \n",
" std | \n",
" 0.763339 | \n",
"
\n",
" \n",
" min | \n",
" -4.902857 | \n",
"
\n",
" \n",
" 25% | \n",
" -1.289797 | \n",
"
\n",
" \n",
" 50% | \n",
" -0.919636 | \n",
"
\n",
" \n",
" 75% | \n",
" -0.740748 | \n",
"
\n",
" \n",
" max | \n",
" -0.600000 | \n",
"
\n",
" \n",
"
\n",
"
"
]
},
"execution_count": 96,
"metadata": {
},
"output_type": "execute_result"
}
],
"source": [
"Tuesdays.describe()"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"collapsed": false
},
"outputs": [
],
"source": [
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (Ubuntu Linux)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}