Hosted by CoCalc
Download
1
<exercise checkit-seed="0008" checkit-slug="A4" checkit-title="Injectivity and surjectivity">
2
<statement>
3
<p>
4
Let <m>T:\mathbb{R}^5 \to \mathbb{R}^3</m> be the linear transformation given by the standard matrix
5
<m>\left[\begin{array}{ccccc}
6
5 &amp; -3 &amp; 3 &amp; 25 &amp; 12 \\
7
4 &amp; -3 &amp; 1 &amp; 17 &amp; 13 \\
8
-2 &amp; 1 &amp; -2 &amp; -12 &amp; -3
9
\end{array}\right]</m>.
10
</p>
11
<ol>
12
<li><p>Explain why <m>T</m> is or is not injective.</p></li>
13
<li><p>Explain why <m>T</m> is or is not surjective.</p></li>
14
</ol>
15
</statement>
16
<answer>
17
<p><me>\operatorname{RREF}\left[\begin{array}{ccccc}
18
5 &amp; -3 &amp; 3 &amp; 25 &amp; 12 \\
19
4 &amp; -3 &amp; 1 &amp; 17 &amp; 13 \\
20
-2 &amp; 1 &amp; -2 &amp; -12 &amp; -3
21
\end{array}\right]=\left[\begin{array}{ccccc}
22
1 &amp; 0 &amp; 0 &amp; 2 &amp; 3 \\
23
0 &amp; 1 &amp; 0 &amp; -2 &amp; -1 \\
24
0 &amp; 0 &amp; 1 &amp; 3 &amp; -2
25
\end{array}\right]</me></p>
26
<ol>
27
<li>
28
<p><m>T</m> is not injective.</p>
29
</li>
30
<li>
31
<p><m>T</m> is surjective.</p>
32
</li>
33
</ol>
34
</answer>
35
</exercise>
36
37