\documentclass{exam}
\usepackage{amsmath}
\usepackage{amsfonts}
\begin{document}
\begin{center}
Worksheet 4 - Due 10/27
\end{center}
\begin{questions}
\question
Find an example of each of the following. If it is not possible, write NOT
POSSIBLE.
\begin{parts}
\part
Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to
\mathbb{R}^3$ (this means they are both from $\mathbb{R}^3$ to
$\mathbb{R}^3$) such that $S$ is onto but $S\circ T$ (this is the
function given by $(S\circ T)(x)=S(T(x))$) is not.
\part
Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to
\mathbb{R}^3$ such that $T$ is onto but $S\circ T$ is not.
\part
Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to
\mathbb{R}^3$ such that $S$ is one-to-one but $S\circ T$ is not.
\part
Give an example of 2 linear transformations $S,T:\mathbb{R}^3 \to
\mathbb{R}^3$ such that $T$ is one-to-one but $S\circ T$ is not.
\end{parts}
\question
Give a linear transformation $T:\mathbb{R}^2\to\mathbb{R}^2$ such that
$T(1,1)=(2,3)$ and $T(-1,2)=(0,1)$. Do this using matrix inverses.
\question
Find an example of each of the following. If it is not possible, write NOT
POSSIBLE.
\begin{parts}
\part
Give an example of a linear transformation
$T:\mathbb{R}^2\to\mathbb{R}^2$ that reflects every point about the
$x$-axis.
\part
Give an example of a linear transformation
$T:\mathbb{R}^2\to\mathbb{R}^2$ that reflects every point about the
$x=y$ line.
\part
Give an example of a linear transformation
$T:\mathbb{R}^2\to\mathbb{R}^2$ that shifts every point up by one unit.
\end{parts}
\end{questions}
\end{document}