[1X3 [33X[0;0YBasic operations with numerical semigroups[133X[101X
[1X3.1 [33X[0;0YInvariants[133X[101X
[1X3.1-1 Multiplicity[101X
[29X[2XMultiplicity[102X( [3XNS[103X ) [32X attribute
[29X[2XMultiplicityOfNumericalSemigroup[102X( [3XNS[103X ) [32X attribute
[33X[0;0Y[3XNS[103X is a numerical semigroup. Returns the multiplicity of [3XNS[103X, which is the
smallest positive integer belonging to [3XNS[103X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XS := NumericalSemigroup("modular", 7,53);[127X[104X
[4X[28X<Modular numerical semigroup satisfying 7x mod 53 <= x >[128X[104X
[4X[25Xgap>[125X [27XMultiplicityOfNumericalSemigroup(S);[127X[104X
[4X[28X8[128X[104X
[4X[25Xgap>[125X [27XNumericalSemigroup(3,5);[127X[104X
[4X[28X<Numerical semigroup with 2 generators>[128X[104X
[4X[25Xgap>[125X [27XMultiplicity(last);[127X[104X
[4X[28X3[128X[104X
[4X[32X[104X
[1X3.1-2 GeneratorsOfNumericalSemigroup[101X
[29X[2XGeneratorsOfNumericalSemigroup[102X( [3XS[103X ) [32X attribute
[29X[2XGenerators[102X( [3XS[103X ) [32X attribute
[29X[2XMinimalGeneratingSystemOfNumericalSemigroup[102X( [3XS[103X ) [32X attribute
[29X[2XMinimalGeneratingSystem[102X( [3XS[103X ) [32X attribute
[29X[2XMinimalGenerators[102X( [3XS[103X ) [32X attribute
[33X[0;0Y[3XS[103X is a numerical semigroup. [10XGeneratorsOfNumericalSemigroup[110X returns a set of
generators of [10XS[110X, which may not be minimal.
[10XMinimalGeneratingSystemOfNumericalSemigroup[110X returns the minimal set of
generators of [10XS[110X.[133X
[33X[0;0YFrom Version 0.980, [10XReducedSetOfGeneratorsOfNumericalSemigroup[110X is a synonym
of [10XMinimalGeneratingSystemOfNumericalSemigroup[110X;
[10XGeneratorsOfNumericalSemigroupNC[110X is a synonym of
[10XGeneratorsOfNumericalSemigroup[110X. The names are kept for compatibility with
code produced for previous versions, but will be removed in the future.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XS := NumericalSemigroup("modular", 5,53);[127X[104X
[4X[28X<Modular numerical semigroup satisfying 5x mod 53 <= x >[128X[104X
[4X[25Xgap>[125X [27XGeneratorsOfNumericalSemigroup(S);[127X[104X
[4X[28X[ 11, 12, 13, 32, 53 ][128X[104X
[4X[25Xgap>[125X [27XS := NumericalSemigroup(3, 5, 53);[127X[104X
[4X[28X<Numerical semigroup with 3 generators>[128X[104X
[4X[25Xgap>[125X [27XGeneratorsOfNumericalSemigroup(S);[127X[104X
[4X[28X[ 3, 5, 53 ][128X[104X
[4X[25Xgap>[125X [27XMinimalGeneratingSystemOfNumericalSemigroup(S);[127X[104X
[4X[28X[ 3, 5 ][128X[104X
[4X[25Xgap>[125X [27XMinimalGeneratingSystem(S)=MinimalGeneratingSystemOfNumericalSemigroup(S);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27Xs := NumericalSemigroup(3,5,7,15);[127X[104X
[4X[28X<Numerical semigroup with 4 generators>[128X[104X
[4X[25Xgap>[125X [27XHasGenerators(s);[127X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XHasMinimalGenerators(s);[127X[104X
[4X[28Xfalse[128X[104X
[4X[25Xgap>[125X [27XMinimalGenerators(s);[127X[104X
[4X[28X[ 3, 5, 7 ][128X[104X
[4X[25Xgap>[125X [27XGenerators(s);[127X[104X
[4X[28X[ 3, 5, 7, 15 ][128X[104X
[4X[32X[104X
[1X3.1-3 EmbeddingDimension[101X
[29X[2XEmbeddingDimension[102X( [3XNS[103X ) [32X attribute
[29X[2XEmbeddingDimensionOfNumericalSemigroup[102X( [3XNS[103X ) [32X attribute
[33X[0;0Y[10XNS[110X is a numerical semigroup. It returns the cardinality of its minimal
generating system.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xs := NumericalSemigroup(3,5,7,15);[127X[104X
[4X[28X<Numerical semigroup with 4 generators>[128X[104X
[4X[25Xgap>[125X [27XEmbeddingDimension(s);[127X[104X
[4X[28X3[128X[104X
[4X[25Xgap>[125X [27XEmbeddingDimensionOfNumericalSemigroup(s);[127X[104X
[4X[28X3[128X[104X
[4X[32X[104X
[1X3.1-4 SmallElements[101X
[29X[2XSmallElements[102X( [3XNS[103X ) [32X attribute
[29X[2XSmallElementsOfNumericalSemigroup[102X( [3XNS[103X ) [32X attribute
[33X[0;0Y[10XNS[110X is a numerical semigroup. It returns the list of small elements of [10XNS[110X. Of
course, the time consumed to return a result may depend on the way the
semigroup is given.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XSmallElementsOfNumericalSemigroup(NumericalSemigroup(3,5,7));[127X[104X
[4X[28X[ 0, 3, 5 ][128X[104X
[4X[25Xgap>[125X [27XSmallElements(NumericalSemigroup(3,5,7));[127X[104X
[4X[28X[ 0, 3, 5 ][128X[104X
[4X[32X[104X
[1X3.1-5 FirstElementsOfNumericalSemigroup[101X
[29X[2XFirstElementsOfNumericalSemigroup[102X( [3Xn[103X, [3XNS[103X ) [32X function
[33X[0;0Y[10XNS[110X is a numerical semigroup. It returns the list with the first [3Xn[103X elements
of [10XNS[110X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XFirstElementsOfNumericalSemigroup(2,NumericalSemigroup(3,5,7));[127X[104X
[4X[28X[ 0, 3 ][128X[104X
[4X[25Xgap>[125X [27XFirstElementsOfNumericalSemigroup(10,NumericalSemigroup(3,5,7));[127X[104X
[4X[28X[ 0, 3, 5, 6, 7, 8, 9, 10, 11, 12 ][128X[104X
[4X[32X[104X
[1X3.1-6 RthElementOfNumericalSemigroup[101X
[29X[2XRthElementOfNumericalSemigroup[102X( [3XS[103X, [3Xr[103X ) [32X operation
[33X[0;0Y[3XS[103X is a numerical semigroup and [3Xr[103X is an integer. It returns the [3Xr[103X-th element
of [3XS[103X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XS := NumericalSemigroup(7,8,17);;[127X[104X
[4X[25Xgap>[125X [27XRthElementOfNumericalSemigroup(S,53);[127X[104X
[4X[28X68[128X[104X
[4X[32X[104X
[1X3.1-7 AperyList[101X
[29X[2XAperyList[102X( [3XS[103X, [3Xn[103X ) [32X attribute
[29X[2XAperyListOfNumericalSemigroupWRTElement[102X( [3XS[103X, [3Xn[103X ) [32X operation
[33X[0;0Y[3XS[103X is a numerical semigroup and [3Xn[103X is a positive element of [3XS[103X. Computes the
Apéry list of [3XS[103X with respect to [3Xn[103X. It contains for every [22Xi∈ {0,...,[3Xn[103X-1}[122X, in
the [22Xi+1[122Xth position, the smallest element in the semigroup congruent with [22Xi[122X
modulo [3Xn[103X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XS := NumericalSemigroup("modular", 5,53);;[127X[104X
[4X[25Xgap>[125X [27XAperyListOfNumericalSemigroupWRTElement(S,12);[127X[104X
[4X[28X[ 0, 13, 26, 39, 52, 53, 54, 43, 32, 33, 22, 11 ][128X[104X
[4X[25Xgap>[125X [27XAperyList(S,12);[127X[104X
[4X[28X[ 0, 13, 26, 39, 52, 53, 54, 43, 32, 33, 22, 11 ][128X[104X
[4X[32X[104X
[1X3.1-8 AperyList[101X
[29X[2XAperyList[102X( [3XS[103X ) [32X attribute
[29X[2XAperyListOfNumericalSemigroup[102X( [3XS[103X ) [32X attribute
[33X[0;0Y[3XS[103X is a numerical semigroup. It computes the Apéry list of [3XS[103X with respect to
the multiplicity of [3XS[103X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XS := NumericalSemigroup("modular", 5,53);;[127X[104X
[4X[25Xgap>[125X [27XAperyListOfNumericalSemigroup(S);[127X[104X
[4X[28X[ 0, 12, 13, 25, 26, 38, 39, 51, 52, 53, 32 ][128X[104X
[4X[25Xgap>[125X [27XAperyList(NumericalSemigroup(5,7,11));[127X[104X
[4X[28X[ 0, 11, 7, 18, 14 ][128X[104X
[4X[32X[104X
[1X3.1-9 AperyList[101X
[29X[2XAperyList[102X( [3XS[103X, [3Xn[103X ) [32X attribute
[29X[2XAperyListOfNumericalSemigroupWRTInteger[102X( [3XS[103X, [3Xm[103X ) [32X function
[33X[0;0Y[3XS[103X is a numerical semigroup and [3Xm[103X is an integer. Computes the Apéry list of [3XS[103X
with respect to [3Xm[103X, that is, the set of elements [22Xx[122X in [3XS[103X such that [22Xx-[122X[3Xm[103X is not
in [3XS[103X. If [3Xm[103X is an element in [3XS[103X, then the output of
[10XAperyListOfNumericalSemigroupWRTInteger[110X, as sets, is the same as
[10XAperyListOfNumericalSemigroupWRTElement[110X, though without side effects, in the
sense that this information is no longer used by the package. The output of
[10XAperyList[110X is the same as [10XAperyListOfNumericalSemigroupWRTElement[110X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27X s:=NumericalSemigroup(10,13,19,27);;[127X[104X
[4X[25Xgap>[125X [27XAperyListOfNumericalSemigroupWRTInteger(s,11);[127X[104X
[4X[28X[ 0, 10, 13, 19, 20, 23, 26, 27, 29, 32, 33, 36, 39, 42, 45, 46, 52, 55 ][128X[104X
[4X[25Xgap>[125X [27XAperyList(s,11);[127X[104X
[4X[28X[ 0, 10, 13, 19, 20, 23, 26, 27, 29, 32, 33, 36, 39, 42, 45, 46, 52, 55 ][128X[104X
[4X[25Xgap>[125X [27XLength(last);[127X[104X
[4X[28X18[128X[104X
[4X[25Xgap>[125X [27XAperyListOfNumericalSemigroupWRTInteger(s,10);[127X[104X
[4X[28X[ 0, 13, 19, 26, 27, 32, 38, 45, 51, 54 ][128X[104X
[4X[25Xgap>[125X [27XAperyListOfNumericalSemigroupWRTElement(s,10);[127X[104X
[4X[28X[ 0, 51, 32, 13, 54, 45, 26, 27, 38, 19 ][128X[104X
[4X[25Xgap>[125X [27XLength(last);[127X[104X
[4X[28X10[128X[104X
[4X[25Xgap>[125X [27XAperyList(s,10);[127X[104X
[4X[28X[ 0, 51, 32, 13, 54, 45, 26, 27, 38, 19 ][128X[104X
[4X[32X[104X
[1X3.1-10 AperyListOfNumericalSemigroupAsGraph[101X
[29X[2XAperyListOfNumericalSemigroupAsGraph[102X( [3Xap[103X ) [32X function
[33X[0;0Y[3Xap[103X is the Apéry list of a numerical semigroup. This function returns the
adjacency list of the graph [22X(ap, E)[122X where the edge [22Xu -> v[122X is in [22XE[122X iff [22Xv - u[122X
is in [22Xap[122X. The 0 is ignored.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(3,7);;[127X[104X
[4X[25Xgap>[125X [27XAperyListOfNumericalSemigroupWRTElement(s,10);[127X[104X
[4X[28X[ 0, 21, 12, 3, 14, 15, 6, 7, 18, 9 ][128X[104X
[4X[25Xgap>[125X [27XAperyListOfNumericalSemigroupAsGraph(last);[127X[104X
[4X[28X[ ,, [ 3, 6, 9, 12, 15, 18, 21 ],,, [ 6, 9, 12, 15, 18, 21 ],[128X[104X
[4X[28X[ 7, 14, 21 ],, [ 9, 12, 15, 18, 21 ],,, [ 12, 15, 18, 21 ],,[128X[104X
[4X[28X[ 14, 21 ], [ 15, 18, 21 ],,, [ 18, 21 ],,, [ 21 ] ][128X[104X
[4X[32X[104X
[1X3.1-11 KunzCoordinatesOfNumericalSemigroup[101X
[29X[2XKunzCoordinatesOfNumericalSemigroup[102X( [3XS[103X, [3Xm[103X ) [32X function
[33X[0;0Y[3XS[103X is a numerical semigroup, and [3Xm[103X is a nonzero element of [3XS[103X. The second
argument is optional, and if missing it is assumed to be the multiplicity of
[3XS[103X.[133X
[33X[0;0YThen the Apéry set of [3Xm[103X in [3XS[103X has the form [22X[0,k_1m+1,...,k_m-1m+m-1][122X, and the
output is the [22X(m-1)[122X-uple [22X[k_1,k_2,...,k_m-1][122X[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(3,5,7);[127X[104X
[4X[28X<Numerical semigroup with 3 generators>[128X[104X
[4X[25Xgap>[125X [27XKunzCoordinatesOfNumericalSemigroup(s);[127X[104X
[4X[28X[ 2, 1 ][128X[104X
[4X[25Xgap>[125X [27XKunzCoordinatesOfNumericalSemigroup(s,5);[127X[104X
[4X[28X[ 1, 1, 0, 1 ][128X[104X
[4X[32X[104X
[1X3.1-12 KunzPolytope[101X
[29X[2XKunzPolytope[102X( [3Xm[103X ) [32X function
[33X[0;0Y[3Xm[103X is a positive integer.[133X
[33X[0;0YThe Kunz coordinates of the semigroups with multiplicity [3Xm[103X are solutions of
a system of inequalities [22XAxge b[122X (see [CAGGB02]). The output is the matrix
[22X(A|-b)[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XKunzPolytope(3);[127X[104X
[4X[28X[ [ 1, 0, -1 ], [ 0, 1, -1 ], [ 2, -1, 0 ], [ -1, 2, 1 ] ][128X[104X
[4X[32X[104X
[1X3.1-13 CocycleOfNumericalSemigroupWRTElement[101X
[29X[2XCocycleOfNumericalSemigroupWRTElement[102X( [3XS[103X, [3Xm[103X ) [32X function
[33X[0;0Y[3XS[103X is a numerical semigroup, and [3Xm[103X is a nonzero element of [3XS[103X. The output is
the matrix [22Xh(i,j)=(w(i)+w(j)-w((i+j)mod m))/m[122X, where [22Xw(i)[122X is the smallest
element in [3XS[103X congruent with [22Xi[122X modulo [22Xm[122X (and thus it is in the Apéry set of
[22Xm[122X), [GSHKR17].[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(3,5,7);;[127X[104X
[4X[25Xgap>[125X [27XCocycleOfNumericalSemigroupWRTElement(s,3);[127X[104X
[4X[28X[ [ 0, 0, 0 ], [ 0, 3, 4 ], [ 0, 4, 1 ] ][128X[104X
[4X[32X[104X
[1X3.1-14 FrobeniusNumber[101X
[29X[2XFrobeniusNumber[102X( [3XNS[103X ) [32X attribute
[29X[2XFrobeniusNumberOfNumericalSemigroup[102X( [3XNS[103X ) [32X attribute
[33X[0;0YThe largest nonnegative integer not belonging to a numerical semigroup [22XS[122X is
the [13XFrobenius number[113X of [22XS[122X. If [22XS[122X is the set of nonnegative integers, then
clearly its Frobenius number is [22X-1[122X, otherwise its Frobenius number coincides
with the maximum of the gaps (or fundamental gaps) of [22XS[122X.[133X
[33X[0;0Y[10XNS[110X is a numerical semigroup. It returns the Frobenius number of [10XNS[110X. Of
course, the time consumed to return a result may depend on the way the
semigroup is given or on the knowledge already produced on the semigroup.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XFrobeniusNumberOfNumericalSemigroup(NumericalSemigroup(3,5,7));[127X[104X
[4X[28X4[128X[104X
[4X[25Xgap>[125X [27XFrobeniusNumber(NumericalSemigroup(3,5,7));[127X[104X
[4X[28X4[128X[104X
[4X[32X[104X
[1X3.1-15 Conductor[101X
[29X[2XConductor[102X( [3XNS[103X ) [32X attribute
[29X[2XConductorOfNumericalSemigroup[102X( [3XNS[103X ) [32X attribute
[33X[0;0YThis is just a synonym of [10X FrobeniusNumberOfNumericalSemigroup[110X ([10XNS[110X)[22X+1[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XConductorOfNumericalSemigroup(NumericalSemigroup(3,5,7));[127X[104X
[4X[28X5[128X[104X
[4X[25Xgap>[125X [27XConductor(NumericalSemigroup(3,5,7));[127X[104X
[4X[28X5[128X[104X
[4X[32X[104X
[1X3.1-16 PseudoFrobeniusOfNumericalSemigroup[101X
[29X[2XPseudoFrobeniusOfNumericalSemigroup[102X( [3XS[103X ) [32X attribute
[33X[0;0YAn integer [22Xz[122X is a [13Xpseudo-Frobenius number[113X of [22XS[122X if [22Xz+S∖{0}⊆ S[122X.[133X
[33X[0;0Y[10XS[110X is a numerical semigroup. It returns set of pseudo-Frobenius numbers of [3XS[103X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XS := NumericalSemigroup("modular", 5,53);[127X[104X
[4X[28X<Modular numerical semigroup satisfying 5x mod 53 <= x >[128X[104X
[4X[25Xgap>[125X [27XPseudoFrobeniusOfNumericalSemigroup(S);[127X[104X
[4X[28X[ 21, 40, 41, 42 ][128X[104X
[4X[32X[104X
[1X3.1-17 TypeOfNumericalSemigroup[101X
[29X[2XTypeOfNumericalSemigroup[102X( [3XNS[103X ) [32X attribute
[33X[0;0YStands for [10XLength(PseudoFrobeniusOfNumericalSemigroup (NS))[110X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XS := NumericalSemigroup("modular", 5,53);[127X[104X
[4X[28X<Modular numerical semigroup satisfying 5x mod 53 <= x >[128X[104X
[4X[25Xgap>[125X [27XType(S);[127X[104X
[4X[28X4[128X[104X
[4X[25Xgap>[125X [27XTypeOfNumericalSemigroup(S);[127X[104X
[4X[28X4[128X[104X
[4X[32X[104X
[1X3.1-18 Gaps[101X
[29X[2XGaps[102X( [3XNS[103X ) [32X attribute
[29X[2XGapsOfNumericalSemigroup[102X( [3XNS[103X ) [32X attribute
[33X[0;0YA [13Xgap[113X of a numerical semigroup [22XS[122X is a nonnegative integer not belonging to
[22XS[122X. [10XNS[110X is a numerical semigroup. Both return the set of gaps of [10XNS[110X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XGapsOfNumericalSemigroup(NumericalSemigroup(3,5,7));[127X[104X
[4X[28X[ 1, 2, 4 ][128X[104X
[4X[25Xgap>[125X [27XGaps(NumericalSemigroup(5,7,11));[127X[104X
[4X[28X[ 1, 2, 3, 4, 6, 8, 9, 13 ][128X[104X
[4X[32X[104X
[1X3.1-19 DesertsOfNumericalSemigroup[101X
[29X[2XDesertsOfNumericalSemigroup[102X( [3XNS[103X ) [32X function
[33X[0;0Y[3XNS[103X is a numerical semigroup. The output is the list with the runs of gaps of
[3XNS[103X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(3,5,7);;[127X[104X
[4X[25Xgap>[125X [27XDesertsOfNumericalSemigroup(s);[127X[104X
[4X[28X[ [ 1, 2 ], [ 4 ] ][128X[104X
[4X[32X[104X
[1X3.1-20 IsOrdinaryNumericalSemigroup[101X
[29X[2XIsOrdinaryNumericalSemigroup[102X( [3XNS[103X ) [32X property
[29X[2XIsOrdinary[102X( [3XNS[103X ) [32X property
[33X[0;0Y[3XNS[103X is a numerical semigroup. Dectects if the semigroup is ordinary, that is,
with less than two deserts.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(3,5,7);;[127X[104X
[4X[25Xgap>[125X [27XIsOrdinary(s);[127X[104X
[4X[28Xfalse[128X[104X
[4X[32X[104X
[1X3.1-21 IsAcuteNumericalSemigroup[101X
[29X[2XIsAcuteNumericalSemigroup[102X( [3XNS[103X ) [32X property
[29X[2XIsAcute[102X( [3XNS[103X ) [32X property
[33X[0;0Y[3XNS[103X is a numerical semigroup. Dectects if the semigroup is acute, that is, it
is either ordinary or its last desert (the one with the Frobenius number)
has less elements than the preceding one ([BA04]).[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(3,5,7);;[127X[104X
[4X[25Xgap>[125X [27XIsAcute(s);[127X[104X
[4X[28Xtrue[128X[104X
[4X[32X[104X
[1X3.1-22 Holes[101X
[29X[2XHoles[102X( [3XNS[103X ) [32X attribute
[29X[2XHolesOfNumericalSemigroup[102X( [3XS[103X ) [32X attribute
[33X[0;0Y[10XS[110X is a numerical semigroup. Returns the set of gaps [22Xx[122X of [10XS[110X such that [22XF(S)-x[122X
is also a gap, where [22XF(S)[122X stands for the Frobenius number of [10XS[110X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(3,5);;[127X[104X
[4X[25Xgap>[125X [27XHoles(s);[127X[104X
[4X[28X[ ][128X[104X
[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(3,5,7);;[127X[104X
[4X[25Xgap>[125X [27XHolesOfNumericalSemigroup(s);[127X[104X
[4X[28X[ 2 ][128X[104X
[4X[32X[104X
[1X3.1-23 LatticePathAssociatedToNumericalSemigroup[101X
[29X[2XLatticePathAssociatedToNumericalSemigroup[102X( [3XS[103X, [3Xp[103X, [3Xq[103X ) [32X attribute
[33X[0;0Y[10XS[110X is a numerical semigroup and [10Xp,q[110X are two elements in [10XS[110X.[133X
[33X[0;0YIn this setting [10XS[110X is an oversemigroup of [22X⟨ p,q⟩[122X, and consequently every gap
of [10XS[110X is a gap of [22X⟨ p,q⟩[122X. If [22Xc[122X is the conductor of [22X⟨ p,q⟩[122X, then every gap [22Xg[122X
of [22X⟨ p,q⟩[122X can be written uniquely as [22Xg=c-1-(ap+bp)[122X for some nonnegative
integers [22Xa,b[122X. We say that [22X(a,b)[122X are the coordinates associated to [22Xg[122X.[133X
[33X[0;0YThe output is a path in [22XN^2[122X such that coordinates of the gaps of [22XS[122X
correspond exactly with the points in [22XN^2[122X that are between the path in the
line [22Xax+by=c-1[122X. See [KW14].[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(16,17,71,72);;[127X[104X
[4X[25Xgap>[125X [27XLatticePathAssociatedToNumericalSemigroup(s,16,17);[127X[104X
[4X[28X[ [ 0, 14 ], [ 1, 13 ], [ 2, 12 ], [ 3, 11 ], [ 4, 10 ], [ 5, 9 ], [ 6, 8 ],[128X[104X
[4X[28X [ 7, 7 ], [ 8, 6 ], [ 9, 5 ], [ 10, 4 ], [ 11, 3 ], [ 12, 2 ], [ 13, 1 ],[128X[104X
[4X[28X [ 14, 0 ] ][128X[104X
[4X[32X[104X
[1X3.1-24 Genus[101X
[29X[2XGenus[102X( [3XNS[103X ) [32X attribute
[29X[2XGenusOfNumericalSemigroup[102X( [3XNS[103X ) [32X attribute
[33X[0;0Y[10XNS[110X is a numerical semigroup. It returns the number of gaps of [10XNS[110X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(16,17,71,72);;[127X[104X
[4X[25Xgap>[125X [27XGenusOfNumericalSemigroup(s);[127X[104X
[4X[28X80[128X[104X
[4X[25Xgap>[125X [27XS := NumericalSemigroup("modular", 5,53);[127X[104X
[4X[28X<Modular numerical semigroup satisfying 5x mod 53 <= x >[128X[104X
[4X[25Xgap>[125X [27XGenus(S);[127X[104X
[4X[28X26[128X[104X
[4X[32X[104X
[1X3.1-25 FundamentalGaps[101X
[29X[2XFundamentalGaps[102X( [3XS[103X ) [32X attribute
[29X[2XFundamentalGapsOfNumericalSemigroup[102X( [3XS[103X ) [32X attribute
[33X[0;0Y[10XS[110X The [13Xfundamental gaps[113X of [22XS[122X are those gaps that are maximal with respect to
the partial order induced by division in [22XN[122X. is a numerical semigroup. It
returns the set of fundamental gaps of [3XS[103X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XS := NumericalSemigroup("modular", 5,53);[127X[104X
[4X[28X<Modular numerical semigroup satisfying 5x mod 53 <= x >[128X[104X
[4X[25Xgap>[125X [27XFundamentalGapsOfNumericalSemigroup(S);[127X[104X
[4X[28X[ 16, 17, 18, 19, 27, 28, 29, 30, 31, 40, 41, 42 ][128X[104X
[4X[25Xgap>[125X [27XGapsOfNumericalSemigroup(S);[127X[104X
[4X[28X[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18, 19, 20, 21, 27, 28, 29,[128X[104X
[4X[28X 30, 31, 40, 41, 42 ][128X[104X
[4X[25Xgap>[125X [27XGaps(NumericalSemigroup(5,7,11));[127X[104X
[4X[28X[ 1, 2, 3, 4, 6, 8, 9, 13 ][128X[104X
[4X[25Xgap>[125X [27XFundamentalGaps(NumericalSemigroup(5,7,11));[127X[104X
[4X[28X[ 6, 8, 9, 13 ][128X[104X
[4X[32X[104X
[1X3.1-26 SpecialGaps[101X
[29X[2XSpecialGaps[102X( [3XS[103X ) [32X attribute
[29X[2XSpecialGapsOfNumericalSemigroup[102X( [3XS[103X ) [32X attribute
[33X[0;0YThe [13Xspecial gaps[113X of a numerical semigroup [22XS[122X, are those fundamental gaps such
that if they are added to the given numerical semigroup, then the resulting
set is again a numerical semigroup. [10XS[110X is a numerical semigroup. It returns
the special gaps of [3XS[103X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XS := NumericalSemigroup("modular", 5,53);[127X[104X
[4X[28X<Modular numerical semigroup satisfying 5x mod 53 <= x >[128X[104X
[4X[25Xgap>[125X [27XSpecialGaps(S);[127X[104X
[4X[28X[ 40, 41, 42 ][128X[104X
[4X[25Xgap>[125X [27XSpecialGapsOfNumericalSemigroup(S);[127X[104X
[4X[28X[ 40, 41, 42 ][128X[104X
[4X[32X[104X
[1X3.2 [33X[0;0YWilf's conjecture[133X[101X
[33X[0;0YLet [22XS[122X be a numerical semigroup, with conductor [22Xc[122X and embedding dimension [22Xe[122X.
Denote by [22Xl[122X the cardinality of the set of elements in [22XS[122X smaller than [22Xc[122X. Wilf
in [Wil78] asked whether or not [22Xl/cge 1/e[122X for all numerical semigroups. In
this section we give some functions to experiment with this conjecture, as
defined in [Eli15].[133X
[1X3.2-1 WilfNumber[101X
[29X[2XWilfNumber[102X( [3XS[103X ) [32X attribute
[29X[2XWilfNumberOfNumericalSemigroup[102X( [3XS[103X ) [32X attribute
[33X[0;0Y[10XS[110X is a numerical semigroup. Let [22Xc[122X, [22Xe[122X and [22Xl[122X be the conductor, embedding
dimension and number of elements smaller than [22Xc[122X in [3XS[103X. Returns [22Xe l-c[122X, which
was conjetured by Wilf to be nonnegative.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xl:=NumericalSemigroupsWithGenus(10);;[127X[104X
[4X[25Xgap>[125X [27XFiltered(l, s->WilfNumberOfNumericalSemigroup(s)<0); [127X[104X
[4X[28X[ ][128X[104X
[4X[25Xgap>[125X [27XMaximum(Set(l, s->WilfNumberOfNumericalSemigroup(s)));[127X[104X
[4X[28X70[128X[104X
[4X[25Xgap>[125X [27Xs := NumericalSemigroup(13,25,37);;[127X[104X
[4X[25Xgap>[125X [27XWilfNumber(s); [127X[104X
[4X[28X96[128X[104X
[4X[32X[104X
[1X3.2-2 EliahouNumber[101X
[29X[2XEliahouNumber[102X( [3XS[103X ) [32X attribute
[29X[2XTruncatedWilfNumberOfNumericalSemigroup[102X( [3XS[103X ) [32X attribute
[33X[0;0Y[10XS[110X is a numerical semigroup. Let [22Xc[122X, [22Xm[122X, [22Xs[122X and [22Xl[122X be the conductor,
multiplicity, number of generators smaller than [22Xc[122X, and number of elements
smaller than [22Xc[122X in [3XS[103X, respectively. Let [22Xq[122X and [22Xr[122X be the quotient and negative
remainder of the division of [22Xc[122X by [22Xm[122X, that is, [22Xc=qm-r[122X. Returns [22Xs l-qd_q+r[122X,
where [22Xd_q[122X corresponds with the number of integers in [22X[c,c+m[[122X that are not
minimal generators of [3XS[103X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(5,7,9);;[127X[104X
[4X[25Xgap>[125X [27XTruncatedWilfNumberOfNumericalSemigroup(s);[127X[104X
[4X[28X4[128X[104X
[4X[25Xgap>[125X [27Xs:=NumericalSemigroupWithGivenElementsAndFrobenius([14,22,23],55);;[127X[104X
[4X[25Xgap>[125X [27XEliahouNumber(s);[127X[104X
[4X[28X-1[128X[104X
[4X[32X[104X
[1X3.2-3 ProfileOfNumericalSemigroup[101X
[29X[2XProfileOfNumericalSemigroup[102X( [3XS[103X ) [32X attribute
[33X[0;0Y[10XS[110X is a numerical semigroup. Let [22Xc[122X and [22Xm[122X be the conductor and multiplicity of
[3XS[103X, respectively. Let [22Xq[122X and [22Xr[122X be the quotient and nonpositive remainder of
the division of [22Xc[122X by [22Xm[122X, that is, [22Xc=qm-r[122X. Returns a list of lists of
integers, each list is the cardinality of [22XS ∩ [jm-r, (j+1)m-r[[122X with [22Xj[122X in
[1..q-1].[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(5,7,9);;[127X[104X
[4X[25Xgap>[125X [27XProfileOfNumericalSemigroup(s);[127X[104X
[4X[28X[ 2, 1 ][128X[104X
[4X[25Xgap>[125X [27Xs:=NumericalSemigroupWithGivenElementsAndFrobenius([14,22,23],55);;[127X[104X
[4X[25Xgap>[125X [27XProfileOfNumericalSemigroup(s);[127X[104X
[4X[28X[ 3, 0, 0 ][128X[104X
[4X[32X[104X
[1X3.2-4 EliahouSlicesOfNumericalSemigroup[101X
[29X[2XEliahouSlicesOfNumericalSemigroup[102X( [3XS[103X ) [32X attribute
[33X[0;0Y[10XS[110X is a numerical semigroup. Let [22Xc[122X and [22Xm[122X be the conductor and multiplicity of
[3XS[103X, respectively. Let [22Xq[122X and [22Xr[122X be the quotient and negative remainder of the
division of [22Xc[122X by [22Xm[122X, that is, [22Xc=qm-r[122X. Returns a list of lists of integers,
each list is the set [22XS ∩ [jm-r, (j+1)m-r[[122X with [22Xj[122X in [1..q]. So this is a
partition of the set of small elements of [3XS[103X (without [22X0[122X).[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xs:=NumericalSemigroup(5,7,9);; [127X[104X
[4X[25Xgap>[125X [27XEliahouSlicesOfNumericalSemigroup(s);[127X[104X
[4X[28X[ [ 5, 7 ], [ 9, 10, 12 ] ][128X[104X
[4X[25Xgap>[125X [27XSmallElements(s);[127X[104X
[4X[28X[ 0, 5, 7, 9, 10, 12, 14 ][128X[104X
[4X[32X[104X