[1XIndex[101X
[2X*[102X (for toric divisors) 8.4-9
[2X+[102X 8.4-7
[2X-[102X 8.4-8
[2X\*[102X 3.4-3
[2XAddDivisorToItsAmbientVariety[102X 8.4-5
[2XAffineCone[102X 6.3-1
[2XAffineOpenCovering[102X 3.3-1
[2XAmbientToricVariety[102X 4.3-3
[2XAmbientToricVariety[102X (for toric divisors) 8.3-8
[2XBasisOfGlobalSections[102X 8.3-6
[2XCartierData[102X 8.3-1
[2XCartierTorusInvariantDivisorGroup[102X 3.3-18
[2XCharacterLattice[102X 3.3-12
[2XCharacterOfPrincipalDivisor[102X 8.3-2
[2XCharactersForClosedEmbedding[102X 8.4-2
[2XCharacterToRationalFunction[102X 3.4-4
[2XClassGroup[102X 3.3-4
[2XClassGroup[102X (for toric morphisms) 7.3-6
[2XClassOfDivisor[102X 8.3-4
[2XClosureOfTorusOrbitOfCone[102X 4.4-1
[2XCone[102X 5.4-2
[2XConeOfVariety[102X 5.3-4
[2XCoordinateRing[102X 5.3-1
[2XCoordinateRing[102X (for affine Varieties) 5.4-1
[2XCoordinateRingOfTorus[102X 3.3-10
[2XCoordinateRingOfTorus[102X (for a variety and a list of variables) 3.4-2
[2XCoxRing[102X 3.3-2
[2XCoxRing[102X (for a variety and a string of variables) 3.4-5
[2XCoxRingOfTargetOfDivisorMorphism[102X 8.3-13
[2XCoxVariety[102X 3.3-16
[2XCreateDivisor[102X (for a homalg element) 8.5-3
[2XCreateDivisor[102X (for a list of integers) 8.5-4
[2XDegreeOfDivisor[102X 8.3-11
[2XDimension[102X 3.3-8
[2XDimensionOfTorusfactor[102X 3.3-9
[2XDivisorOfCharacter[102X 8.5-1
[2XDivisorOfCharacter[102X (for a list of integers) 8.5-2
[2XDivisorOfGivenClass[102X 8.4-4
[2XFan[102X 3.4-7
[2XFanOfVariety[102X 3.3-17
[2XHasNoTorusfactor[102X 3.2-7
[2XHasTorusfactor[102X 3.2-6
[2XInclusionMorphism[102X 4.3-2
[2XIntegerForWhichIsSureVeryAmple[102X 8.3-7
[2XIrrelevantIdeal[102X 3.3-14
[2XIsAffine[102X 3.2-2
[2XIsAffineToricVariety[102X 5.1-1
[2XIsAmple[102X 8.2-5
[2XIsBasepointFree[102X 8.2-4
[2XIsCartier[102X 8.2-1
[2XIsClosed[102X 4.2-1
[2XIsComplete[102X 3.2-4
[2XIsMorphism[102X 7.2-1
[2XIsNormalVariety[102X 3.2-1
[2XIsOpen[102X 4.2-2
[2XIsOrbifold[102X 3.2-8
[2XIsPrimedivisor[102X 8.2-3
[2XIsPrincipal[102X 8.2-2
[2XIsProductOf[102X 3.3-11
[2XIsProjective[102X 3.2-3
[2XIsProjectiveToricVariety[102X 6.1-1
[2XIsProper[102X 7.2-2
[2XIsSmooth[102X 3.2-5
[2XIsToricDivisor[102X 8.1-1
[2XIsToricMorphism[102X 7.1-1
[2XIsToricSubvariety[102X 4.1-1
[2XIsToricVariety[102X 3.1-1
[2XIsVeryAmple[102X 8.2-6
[2XIsWholeVariety[102X 4.2-3
[2XListOfVariablesOfCoordinateRing[102X 5.3-2
[2XListOfVariablesOfCoxRing[102X 3.3-3
[2XMapFromCharacterToPrincipalDivisor[102X 3.3-7
[2XMonomsOfCoxRingOfDegree[102X 8.3-12
[2XMonomsOfCoxRingOfDegree[102X (for an homalg element) 8.4-3
[2XMorphismFromCoordinateRingToCoordinateRingOfTorus[102X 5.3-3
[2XMorphismFromCoxVariety[102X 3.3-15
[2XMorphismOnCartierDivisorGroup[102X 7.3-7
[2XMorphismOnWeilDivisorGroup[102X 7.3-5
[2XNameOfVariety[102X 3.3-19
[2XPicardGroup[102X 3.3-5
[2XPicardGroup[102X (for toric morphisms) 7.3-8
[2XPolytope[102X 6.4-1
[2XPolytope[102X (for toric divisors) 8.4-6
[2XPolytopeOfDivisor[102X 8.3-5
[2XPolytopeOfVariety[102X 6.3-2
[2XProjectiveEmbedding[102X 6.3-3
[2XRangeObject[102X 7.3-4
[2XRingMorphismOfDivisor[102X 8.3-14
[2XSourceObject[102X 7.3-1
[2XToricImageObject[102X 7.3-3
[2XToricMorphism[102X (for a source and a matrix) 7.5-1
[2XToricMorphism[102X (for a source, matrix and target) 7.5-2
[2XToricSubvariety[102X 4.5-1
[5XToricVarieties[105X .-3
[2XToricVariety[102X 3.5-1
[2XToricVarietyOfDivisor[102X 8.3-3
[2XTorusInvariantDivisorGroup[102X 3.3-6
[2XTorusInvariantPrimeDivisors[102X 3.3-13
[2Xtwitter[102X 3.3-20
[2XUnderlyingGridMorphism[102X 7.3-2
[2XUnderlyingGroupElement[102X 8.3-9
[2XUnderlyingListList[102X 7.4-1
[2XUnderlyingSheaf[102X 3.4-1
[2XUnderlyingToricVariety[102X 4.3-1
[2XUnderlyingToricVariety[102X (for prime divisors) 8.3-10
[2XVeryAmpleMultiple[102X 8.4-1
[2XWeilDivisorsOfVariety[102X 3.4-6
-------------------------------------------------------