Cyclotomic Field of order 12 and degree 4
Dirichlet character modulo 35 of conductor 5 mapping 22 |--> zeta12^3, 31 |--> 1
Dirichlet character modulo 35 of conductor 7 mapping 22 |--> 1, 31 |--> zeta12^2
[1, 22, 29, 8, 1, 22, 29, 8, 1, 22]
[1, 31, 16, 6, 11, 26, 1]
2 1
[1, 2, 4, 3, 1]
1 3
[1, 3, 2, 6, 4, 5, 1]
[1, 2, 4, 1, 2, 4, 1]
Group of Dirichlet characters of modulus 7 over Cyclotomic Field of order 6 and degree 2
Cyclotomic Field of order 6 and degree 2
[Dirichlet character modulo 7 of conductor 1 mapping 3 |--> 1, Dirichlet character modulo 7 of conductor 7 mapping 3 |--> zeta6, Dirichlet character modulo 7 of conductor 7 mapping 3 |--> zeta6 - 1, Dirichlet character modulo 7 of conductor 7 mapping 3 |--> -1, Dirichlet character modulo 7 of conductor 7 mapping 3 |--> -zeta6, Dirichlet character modulo 7 of conductor 7 mapping 3 |--> -zeta6 + 1]
6
1
Dirichlet character modulo 7 of conductor 7 mapping 3 |--> zeta6
[0, 1, zeta6 - 1, zeta6, -zeta6, -zeta6 + 1, -1]
[0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1]
6