Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.
| Download
Try doing some basic maths questions in the Lean Theorem Prover. Functions, real numbers, equivalence relations and groups. Click on README.md and then on "Open in CoCalc with one click".
Project: Xena
Views: 18536License: APACHE
/- Copyright (c) 2019 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Chris Hughes -/ import data.rat set_theory.cardinal namespace rat open denumerable instance : infinite ℚ := infinite.of_injective (coe : ℕ → ℚ) nat.cast_injective private def denumerable_aux : ℚ ≃ { x : ℤ × ℕ // 0 < x.2 ∧ x.1.nat_abs.coprime x.2 } := { to_fun := λ x, ⟨⟨x.1, x.2⟩, x.3, x.4⟩, inv_fun := λ x, ⟨x.1.1, x.1.2, x.2.1, x.2.2⟩, left_inv := λ ⟨_, _, _, _⟩, rfl, right_inv := λ ⟨⟨_, _⟩, _, _⟩, rfl } instance : denumerable ℚ := begin let T := { x : ℤ × ℕ // 0 < x.2 ∧ x.1.nat_abs.coprime x.2 }, letI : infinite T := infinite.of_injective _ denumerable_aux.injective, letI : encodable T := encodable.subtype, letI : denumerable T := of_encodable_of_infinite T, exact denumerable.of_equiv T denumerable_aux end end rat namespace cardinal lemma mk_rat : cardinal.mk ℚ = omega := denumerable_iff.mp ⟨by apply_instance⟩ end cardinal