Square CoCalc Logo
FeaturesSoftwarePricingInfoPoliciesShareSupport Try Sign InSign Up
Path: support / 2014-11-12-bugs.sagews

Examples for support purposes.

Views: 1079171
License: GPL3
Image: ubuntu2004-dev
Project: Support and Testing
Raw | Embed | Download |
var('x','y') implicit_plot??(x*y-1, (x,0,2), (y,0,2), axes_labels=["$x$", "$y$"], color='red', legend_label="abc")
(x, y)
File: /usr/local/sage/sage-6.3.beta6/local/lib/python2.7/site-packages/sage/misc/decorators.py Source: @options(plot_points=150, contours=(0,0), fill=False, cmap=["blue"]) def implicit_plot(f, xrange, yrange, **options): r""" ``implicit_plot`` takes a function of two variables, `f(x,y)` and plots the curve `f(x,y) = 0` over the specified ``xrange`` and ``yrange`` as demonstrated below. ``implicit_plot(f, (xmin, xmax), (ymin, ymax), ...)`` ``implicit_plot(f, (x, xmin, xmax), (y, ymin, ymax), ...)`` INPUT: - ``f`` -- a function of two variables or equation in two variables - ``(xmin, xmax)`` -- 2-tuple, the range of ``x`` values or ``(x,xmin,xmax)`` - ``(ymin, ymax)`` -- 2-tuple, the range of ``y`` values or ``(y,ymin,ymax)`` The following inputs must all be passed in as named parameters: - ``plot_points`` -- integer (default: 150); number of points to plot in each direction of the grid - ``fill`` -- boolean (default: ``False``); if ``True``, fill the region `f(x,y) < 0`. - ``linewidth`` -- integer (default: None), if a single integer all levels will be of the width given, otherwise the levels will be plotted with the widths in the order given. - ``linestyle`` -- string (default: None), the style of the line to be plotted, one of: ``"solid"``, ``"dashed"``, ``"dashdot"`` or ``"dotted"``, respectively ``"-"``, ``"--"``, ``"-."``, or ``":"``. - ``color`` -- string (default: ``blue``), the color of the plot. Colors are defined in :mod:`sage.plot.colors`; try ``colors?`` to see them all. - ``legend_label`` -- the label for this item in the legend - ``base`` - (default: 10) the base of the logarithm if a logarithmic scale is set. This must be greater than 1. The base can be also given as a list or tuple ``(basex, basey)``. ``basex`` sets the base of the logarithm along the horizontal axis and ``basey`` sets the base along the vertical axis. - ``scale`` -- (default: ``"linear"``) string. The scale of the axes. Possible values are ``"linear"``, ``"loglog"``, ``"semilogx"``, ``"semilogy"``. The scale can be also be given as single argument that is a list or tuple ``(scale, base)`` or ``(scale, basex, basey)``. The ``"loglog"`` scale sets both the horizontal and vertical axes to logarithmic scale. The ``"semilogx"`` scale sets the horizontal axis to logarithmic scale. The ``"semilogy"`` scale sets the vertical axis to logarithmic scale. The ``"linear"`` scale is the default value when :class:`~sage.plot.graphics.Graphics` is initialized. EXAMPLES: A simple circle with a radius of 2. Note that since the input function is an expression, we need to explicitly declare the variables in 3-tuples for the range:: sage: var("x y") (x, y) sage: implicit_plot(x^2+y^2-2, (x,-3,3), (y,-3,3)) I can do the same thing, but using a callable function so I don't need to explicitly define the variables in the ranges, and filling the inside:: sage: f(x,y) = x^2 + y^2 - 2 sage: implicit_plot(f, (-3, 3), (-3, 3),fill=True) The same circle but with a different line width:: sage: implicit_plot(f, (-3,3), (-3,3), linewidth=6) And again the same circle but this time with a dashdot border:: sage: implicit_plot(f, (-3,3), (-3,3), linestyle='dashdot') You can also plot an equation:: sage: var("x y") (x, y) sage: implicit_plot(x^2+y^2 == 2, (x,-3,3), (y,-3,3)) You can even change the color of the plot:: sage: implicit_plot(x^2+y^2 == 2, (x,-3,3), (y,-3,3), color="red") Here is a beautiful (and long) example which also tests that all colors work with this:: sage: G = Graphics() sage: counter = 0 sage: for col in colors.keys(): # long time ... G += implicit_plot(x^2+y^2==1+counter*.1, (x,-4,4),(y,-4,4),color=col) ... counter += 1 sage: G.show(frame=False) We can define a level-`n` approximation of the boundary of the Mandelbrot set:: sage: def mandel(n): ... c = polygen(CDF, 'c') ... z = 0 ... for i in range(n): ... z = z*z + c ... def f(x, y): ... val = z(CDF(x, y)) ... return val.norm() - 4 ... return f The first-level approximation is just a circle:: sage: implicit_plot(mandel(1), (-3, 3), (-3, 3)) A third-level approximation starts to get interesting:: sage: implicit_plot(mandel(3), (-2, 1), (-1.5, 1.5)) The seventh-level approximation is a degree 64 polynomial, and ``implicit_plot`` does a pretty good job on this part of the curve. (``plot_points=200`` looks even better, but it takes over a second.) :: sage: implicit_plot(mandel(7), (-0.3, 0.05), (-1.15, -0.9),plot_points=50) When making a filled implicit plot using a python function rather than a symbolic expression the user should increase the number of plot points to avoid artifacts:: sage: implicit_plot(lambda x,y: x^2+y^2-2, (x,-3,3), (y,-3,3), fill=True, plot_points=500) # long time An example of an implicit plot on 'loglog' scale:: sage: implicit_plot(x^2+y^2 == 200, (x,1,200), (y,1,200), scale='loglog') TESTS:: sage: f(x,y) = x^2 + y^2 - 2 sage: implicit_plot(f, (-3, 3), (-3, 3),fill=5) Traceback (most recent call last): ... ValueError: fill=5 is not supported """ from sage.symbolic.expression import is_SymbolicEquation if is_SymbolicEquation(f): if f.operator() != operator.eq: raise ValueError("input to implicit plot must be function or equation") f = f.lhs() - f.rhs() linewidths = options.pop('linewidth', None) linestyles = options.pop('linestyle', None) if 'color' in options: options['cmap']=[options.pop('color', None)] if options['fill'] is True: options.pop('fill') options.pop('contours',None) options.pop('cmap',None) from sage.symbolic.expression import is_Expression if not is_Expression(f): return region_plot(lambda x,y: f(x,y)<0, xrange, yrange, borderwidth=linewidths, borderstyle=linestyles, **options) else: return region_plot(f<0, xrange, yrange, borderwidth=linewidths, borderstyle=linestyles, **options) elif options['fill'] is False: return contour_plot(f, xrange, yrange, linewidths=linewidths, linestyles=linestyles, **options) else: raise ValueError("fill=%s is not supported" % options['fill'])