For a given morphism \alpha: A \rightarrow B, a kernel of \alpha consists of three parts:
an object K,
a morphism \iota: K \rightarrow A such that \alpha \circ \iota \sim_{K,B} 0,
a dependent function u mapping each morphism \tau: T \rightarrow A satisfying \alpha \circ \tau \sim_{T,B} 0 to a morphism u(\tau): T \rightarrow K such that \iota \circ u( \tau ) \sim_{T,A} \tau.
The triple ( K, \iota, u ) is called a kernel of \alpha if the morphisms u( \tau ) are uniquely determined up to congruence of morphisms. We denote the object K of such a triple by \mathrm{KernelObject}(\alpha). We say that the morphism u(\tau) is induced by the universal property of the kernel. \\ \mathrm{KernelObject} is a functorial operation. This means: for \mu: A \rightarrow A', \nu: B \rightarrow B', \alpha: A \rightarrow B, \alpha': A' \rightarrow B' such that \nu \circ \alpha \sim_{A,B'} \alpha' \circ \mu, we obtain a morphism \mathrm{KernelObject}( \alpha ) \rightarrow \mathrm{KernelObject}( \alpha' ).
‣ KernelObject ( alpha ) | ( attribute ) |
Returns: an object
The argument is a morphism \alpha. The output is the kernel K of \alpha.
‣ KernelEmbedding ( alpha ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{KernelObject}(\alpha),A)
The argument is a morphism \alpha: A \rightarrow B. The output is the kernel embedding \iota: \mathrm{KernelObject}(\alpha) \rightarrow A.
‣ KernelEmbeddingWithGivenKernelObject ( alpha, K ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(K,A)
The arguments are a morphism \alpha: A \rightarrow B and an object K = \mathrm{KernelObject}(\alpha). The output is the kernel embedding \iota: K \rightarrow A.
‣ KernelLift ( alpha, tau ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(T,\mathrm{KernelObject}(\alpha))
The arguments are a morphism \alpha: A \rightarrow B and a test morphism \tau: T \rightarrow A satisfying \alpha \circ \tau \sim_{T,B} 0. The output is the morphism u(\tau): T \rightarrow \mathrm{KernelObject}(\alpha) given by the universal property of the kernel.
‣ KernelLiftWithGivenKernelObject ( alpha, tau, K ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(T,K)
The arguments are a morphism \alpha: A \rightarrow B, a test morphism \tau: T \rightarrow A satisfying \alpha \circ \tau \sim_{T,B} 0, and an object K = \mathrm{KernelObject}(\alpha). The output is the morphism u(\tau): T \rightarrow K given by the universal property of the kernel.
‣ AddKernelObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation KernelObject
. F: \alpha \mapsto \mathrm{KernelObject}(\alpha).
‣ AddKernelEmbedding ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation KernelEmbedding
. F: \alpha \mapsto \iota.
‣ AddKernelEmbeddingWithGivenKernelObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation KernelEmbeddingWithGivenKernelObject
. F: (\alpha, K) \mapsto \iota.
‣ AddKernelLift ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation KernelLift
. F: (\alpha, \tau) \mapsto u(\tau).
‣ AddKernelLiftWithGivenKernelObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation KernelLiftWithGivenKernelObject
. F: (\alpha, \tau, K) \mapsto u.
‣ KernelObjectFunctorial ( L ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \mathrm{KernelObject}( \alpha ), \mathrm{KernelObject}( \alpha' ) )
The argument is a list L = [ \alpha: A \rightarrow B, [ \mu: A \rightarrow A', \nu: B \rightarrow B' ], \alpha': A' \rightarrow B' ] of morphisms. The output is the morphism \mathrm{KernelObject}( \alpha ) \rightarrow \mathrm{KernelObject}( \alpha' ) given by the functorality of the kernel.
‣ KernelObjectFunctorial ( alpha, mu, alpha_prime ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \mathrm{KernelObject}( \alpha ), \mathrm{KernelObject}( \alpha' ) )
The arguments are three morphisms \alpha: A \rightarrow B, \mu: A \rightarrow A', \alpha': A' \rightarrow B'. The output is the morphism \mathrm{KernelObject}( \alpha ) \rightarrow \mathrm{KernelObject}( \alpha' ) given by the functorality of the kernel.
‣ KernelObjectFunctorialWithGivenKernelObjects ( s, alpha, mu, alpha_prime, r ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( s, r )
The arguments are an object s = \mathrm{KernelObject}( \alpha ), three morphisms \alpha: A \rightarrow B, \mu: A \rightarrow A', \alpha': A' \rightarrow B', and an object r = \mathrm{KernelObject}( \alpha' ). The output is the morphism \mathrm{KernelObject}( \alpha ) \rightarrow \mathrm{KernelObject}( \alpha' ) given by the functorality of the kernel.
‣ AddKernelObjectFunctorialWithGivenKernelObjects ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation KernelObjectFunctorialWithGivenKernelObjects
. F: (\mathrm{KernelObject}( \alpha ), \alpha, \mu, \alpha', \mathrm{KernelObject}( \alpha' )) \mapsto (\mathrm{KernelObject}( \alpha ) \rightarrow \mathrm{KernelObject}( \alpha' )).
For a given morphism \alpha: A \rightarrow B, a cokernel of \alpha consists of three parts:
an object K,
a morphism \epsilon: B \rightarrow K such that \epsilon \circ \alpha \sim_{A,K} 0,
a dependent function u mapping each \tau: B \rightarrow T satisfying \tau \circ \alpha \sim_{A, T} 0 to a morphism u(\tau):K \rightarrow T such that u(\tau) \circ \epsilon \sim_{B,T} \tau.
The triple ( K, \epsilon, u ) is called a cokernel of \alpha if the morphisms u( \tau ) are uniquely determined up to congruence of morphisms. We denote the object K of such a triple by \mathrm{CokernelObject}(\alpha). We say that the morphism u(\tau) is induced by the universal property of the cokernel. \\ \mathrm{CokernelObject} is a functorial operation. This means: for \mu: A \rightarrow A', \nu: B \rightarrow B', \alpha: A \rightarrow B, \alpha': A' \rightarrow B' such that \nu \circ \alpha \sim_{A,B'} \alpha' \circ \mu, we obtain a morphism \mathrm{CokernelObject}( \alpha ) \rightarrow \mathrm{CokernelObject}( \alpha' ).
‣ CokernelObject ( alpha ) | ( attribute ) |
Returns: an object
The argument is a morphism \alpha: A \rightarrow B. The output is the cokernel K of \alpha.
‣ CokernelProjection ( alpha ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(B, \mathrm{CokernelObject}( \alpha ))
The argument is a morphism \alpha: A \rightarrow B. The output is the cokernel projection \epsilon: B \rightarrow \mathrm{CokernelObject}( \alpha ).
‣ CokernelProjectionWithGivenCokernelObject ( alpha, K ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(B, K)
The arguments are a morphism \alpha: A \rightarrow B and an object K = \mathrm{CokernelObject}(\alpha). The output is the cokernel projection \epsilon: B \rightarrow \mathrm{CokernelObject}( \alpha ).
‣ CokernelColift ( alpha, tau ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{CokernelObject}(\alpha),T)
The arguments are a morphism \alpha: A \rightarrow B and a test morphism \tau: B \rightarrow T satisfying \tau \circ \alpha \sim_{A, T} 0. The output is the morphism u(\tau): \mathrm{CokernelObject}(\alpha) \rightarrow T given by the universal property of the cokernel.
‣ CokernelColiftWithGivenCokernelObject ( alpha, tau, K ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(K,T)
The arguments are a morphism \alpha: A \rightarrow B, a test morphism \tau: B \rightarrow T satisfying \tau \circ \alpha \sim_{A, T} 0, and an object K = \mathrm{CokernelObject}(\alpha). The output is the morphism u(\tau): K \rightarrow T given by the universal property of the cokernel.
‣ AddCokernelObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation CokernelObject
. F: \alpha \mapsto K.
‣ AddCokernelProjection ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation CokernelProjection
. F: \alpha \mapsto \epsilon.
‣ AddCokernelProjectionWithGivenCokernelObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation CokernelProjection
. F: (\alpha, K) \mapsto \epsilon.
‣ AddCokernelColift ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation CokernelProjection
. F: (\alpha, \tau) \mapsto u(\tau).
‣ AddCokernelColiftWithGivenCokernelObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation CokernelProjection
. F: (\alpha, \tau, K) \mapsto u(\tau).
‣ CokernelObjectFunctorial ( L ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{CokernelObject}( \alpha ), \mathrm{CokernelObject}( \alpha' ))
The argument is a list L = [ \alpha: A \rightarrow B, [ \mu:A \rightarrow A', \nu: B \rightarrow B' ], \alpha': A' \rightarrow B' ]. The output is the morphism \mathrm{CokernelObject}( \alpha ) \rightarrow \mathrm{CokernelObject}( \alpha' ) given by the functorality of the cokernel.
‣ CokernelObjectFunctorial ( alpha, nu, alpha_prime ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{CokernelObject}( \alpha ), \mathrm{CokernelObject}( \alpha' ))
The arguments are three morphisms \alpha: A \rightarrow B, \nu: B \rightarrow B', \alpha': A' \rightarrow B'. The output is the morphism \mathrm{CokernelObject}( \alpha ) \rightarrow \mathrm{CokernelObject}( \alpha' ) given by the functorality of the cokernel.
‣ CokernelObjectFunctorialWithGivenCokernelObjects ( s, alpha, nu, alpha_prime, r ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(s, r)
The arguments are an object s = \mathrm{CokernelObject}( \alpha ), three morphisms \alpha: A \rightarrow B, \nu: B \rightarrow B', \alpha': A' \rightarrow B', and an object r = \mathrm{CokernelObject}( \alpha' ). The output is the morphism \mathrm{CokernelObject}( \alpha ) \rightarrow \mathrm{CokernelObject}( \alpha' ) given by the functorality of the cokernel.
‣ AddCokernelObjectFunctorialWithGivenCokernelObjects ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation CokernelObjectFunctorialWithGivenCokernelObjects
. F: (\mathrm{CokernelObject}( \alpha ), \alpha, \nu, \alpha', \mathrm{CokernelObject}( \alpha' )) \mapsto (\mathrm{CokernelObject}( \alpha ) \rightarrow \mathrm{CokernelObject}( \alpha' )).
A zero object consists of three parts:
an object Z,
a function u_{\mathrm{in}} mapping each object A to a morphism u_{\mathrm{in}}(A): A \rightarrow Z,
a function u_{\mathrm{out}} mapping each object A to a morphism u_{\mathrm{out}}(A): Z \rightarrow A.
The triple (Z, u_{\mathrm{in}}, u_{\mathrm{out}}) is called a zero object if the morphisms u_{\mathrm{in}}(A), u_{\mathrm{out}}(A) are uniquely determined up to congruence of morphisms. We denote the object Z of such a triple by \mathrm{ZeroObject}. We say that the morphisms u_{\mathrm{in}}(A) and u_{\mathrm{out}}(A) are induced by the universal property of the zero object.
‣ ZeroObject ( C ) | ( attribute ) |
Returns: an object
The argument is a category C. The output is a zero object Z of C.
‣ ZeroObject ( c ) | ( attribute ) |
Returns: an object
This is a convenience method. The argument is a cell c. The output is a zero object Z of the category C for which c \in C.
‣ MorphismFromZeroObject ( A ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{ZeroObject}, A)
This is a convenience method. The argument is an object A. It calls \mathrm{UniversalMorphismFromZeroObject} on A.
‣ MorphismIntoZeroObject ( A ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(A, \mathrm{ZeroObject})
This is a convenience method. The argument is an object A. It calls \mathrm{UniversalMorphismIntoZeroObject} on A.
‣ UniversalMorphismFromZeroObject ( A ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{ZeroObject}, A)
The argument is an object A. The output is the universal morphism u_{\mathrm{out}}: \mathrm{ZeroObject} \rightarrow A.
‣ UniversalMorphismFromZeroObjectWithGivenZeroObject ( A, Z ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(Z, A)
The arguments are an object A, and a zero object Z = \mathrm{ZeroObject}. The output is the universal morphism u_{\mathrm{out}}: Z \rightarrow A.
‣ UniversalMorphismIntoZeroObject ( A ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(A, \mathrm{ZeroObject})
The argument is an object A. The output is the universal morphism u_{\mathrm{in}}: A \rightarrow \mathrm{ZeroObject}.
‣ UniversalMorphismIntoZeroObjectWithGivenZeroObject ( A, Z ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(A, Z)
The arguments are an object A, and a zero object Z = \mathrm{ZeroObject}. The output is the universal morphism u_{\mathrm{in}}: A \rightarrow Z.
‣ IsomorphismFromZeroObjectToInitialObject ( C ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{ZeroObject}, \mathrm{InitialObject})
The argument is a category C. The output is the unique isomorphism \mathrm{ZeroObject} \rightarrow \mathrm{InitialObject}.
‣ IsomorphismFromInitialObjectToZeroObject ( C ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{InitialObject}, \mathrm{ZeroObject})
The argument is a category C. The output is the unique isomorphism \mathrm{InitialObject} \rightarrow \mathrm{ZeroObject}.
‣ IsomorphismFromZeroObjectToTerminalObject ( C ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{ZeroObject}, \mathrm{TerminalObject})
The argument is a category C. The output is the unique isomorphism \mathrm{ZeroObject} \rightarrow \mathrm{TerminalObject}.
‣ IsomorphismFromTerminalObjectToZeroObject ( C ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{TerminalObject}, \mathrm{ZeroObject})
The argument is a category C. The output is the unique isomorphism \mathrm{TerminalObject} \rightarrow \mathrm{ZeroObject}.
‣ AddZeroObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation ZeroObject
. F: () \mapsto \mathrm{ZeroObject}.
‣ AddUniversalMorphismIntoZeroObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismIntoZeroObject
. F: A \mapsto u_{\mathrm{in}}(A).
‣ AddUniversalMorphismIntoZeroObjectWithGivenZeroObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismIntoZeroObjectWithGivenZeroObject
. F: (A, Z) \mapsto u_{\mathrm{in}}(A).
‣ AddUniversalMorphismFromZeroObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismFromZeroObject
. F: A \mapsto u_{\mathrm{out}}(A).
‣ AddUniversalMorphismFromZeroObjectWithGivenZeroObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismFromZeroObjectWithGivenZeroObject
. F: (A,Z) \mapsto u_{\mathrm{out}}(A).
‣ AddIsomorphismFromZeroObjectToInitialObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation IsomorphismFromZeroObjectToInitialObject
. F: () \mapsto (\mathrm{ZeroObject} \rightarrow \mathrm{InitialObject}).
‣ AddIsomorphismFromInitialObjectToZeroObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation IsomorphismFromInitialObjectToZeroObject
. F: () \mapsto ( \mathrm{InitialObject} \rightarrow \mathrm{ZeroObject}).
‣ AddIsomorphismFromZeroObjectToTerminalObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation IsomorphismFromZeroObjectToTerminalObject
. F: () \mapsto (\mathrm{ZeroObject} \rightarrow \mathrm{TerminalObject}).
‣ AddIsomorphismFromTerminalObjectToZeroObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation IsomorphismFromTerminalObjectToZeroObject
. F: () \mapsto ( \mathrm{TerminalObject} \rightarrow \mathrm{ZeroObject}).
‣ ZeroObjectFunctorial ( C ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{ZeroObject}, \mathrm{ZeroObject} )
The argument is a category C. The output is the unique morphism \mathrm{ZeroObject} \rightarrow \mathrm{ZeroObject}.
‣ AddZeroObjectFunctorial ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation ZeroObjectFunctorial
. F: () \mapsto (T \rightarrow T).
A terminal object consists of two parts:
an object T,
a function u mapping each object A to a morphism u( A ): A \rightarrow T.
The pair ( T, u ) is called a terminal object if the morphisms u( A ) are uniquely determined up to congruence of morphisms. We denote the object T of such a pair by \mathrm{TerminalObject}. We say that the morphism u( A ) is induced by the universal property of the terminal object. \\ \mathrm{TerminalObject} is a functorial operation. This just means: There exists a unique morphism T \rightarrow T.
‣ TerminalObject ( C ) | ( attribute ) |
Returns: an object
The argument is a category C. The output is a terminal object T of C.
‣ TerminalObject ( c ) | ( attribute ) |
Returns: an object
This is a convenience method. The argument is a cell c. The output is a terminal object T of the category C for which c \in C.
‣ UniversalMorphismIntoTerminalObject ( A ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}( A, \mathrm{TerminalObject} )
The argument is an object A. The output is the universal morphism u(A): A \rightarrow \mathrm{TerminalObject}.
‣ UniversalMorphismIntoTerminalObjectWithGivenTerminalObject ( A, T ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( A, T )
The argument are an object A, and an object T = \mathrm{TerminalObject}. The output is the universal morphism u(A): A \rightarrow T.
‣ AddTerminalObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation TerminalObject
. F: () \mapsto T.
‣ AddUniversalMorphismIntoTerminalObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismIntoTerminalObject
. F: A \mapsto u(A).
‣ AddUniversalMorphismIntoTerminalObjectWithGivenTerminalObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismIntoTerminalObjectWithGivenTerminalObject
. F: (A,T) \mapsto u(A).
‣ TerminalObjectFunctorial ( C ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{TerminalObject}, \mathrm{TerminalObject} )
The argument is a category C. The output is the unique morphism \mathrm{TerminalObject} \rightarrow \mathrm{TerminalObject}.
‣ AddTerminalObjectFunctorial ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation TerminalObjectFunctorial
. F: () \mapsto (T \rightarrow T).
An initial object consists of two parts:
an object I,
a function u mapping each object A to a morphism u( A ): I \rightarrow A.
The pair (I,u) is called a initial object if the morphisms u(A) are uniquely determined up to congruence of morphisms. We denote the object I of such a triple by \mathrm{InitialObject}. We say that the morphism u( A ) is induced by the universal property of the initial object. \\ \mathrm{InitialObject} is a functorial operation. This just means: There exists a unique morphisms I \rightarrow I.
‣ InitialObject ( C ) | ( attribute ) |
Returns: an object
The argument is a category C. The output is an initial object I of C.
‣ InitialObject ( c ) | ( attribute ) |
Returns: an object
This is a convenience method. The argument is a cell c. The output is an initial object I of the category C for which c \in C.
‣ UniversalMorphismFromInitialObject ( A ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{InitialObject} \rightarrow A).
The argument is an object A. The output is the universal morphism u(A): \mathrm{InitialObject} \rightarrow A.
‣ UniversalMorphismFromInitialObjectWithGivenInitialObject ( A, I ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{InitialObject} \rightarrow A).
The arguments are an object A, and an object I = \mathrm{InitialObject}. The output is the universal morphism u(A): \mathrm{InitialObject} \rightarrow A.
‣ AddInitialObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation InitialObject
. F: () \mapsto I.
‣ AddUniversalMorphismFromInitialObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismFromInitialObject
. F: A \mapsto u(A).
‣ AddUniversalMorphismFromInitialObjectWithGivenInitialObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismFromInitialObjectWithGivenInitialObject
. F: (A,I) \mapsto u(A).
‣ InitialObjectFunctorial ( C ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}( \mathrm{InitialObject}, \mathrm{InitialObject} )
The argument is a category C. The output is the unique morphism \mathrm{InitialObject} \rightarrow \mathrm{InitialObject}.
‣ AddInitialObjectFunctorial ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation InitialObjectFunctorial
. F: () \rightarrow ( I \rightarrow I ).
For a given list D = (S_1, \dots, S_n) in an Ab-category, a direct sum consists of five parts:
an object S,
a list of morphisms \pi = (\pi_i: S \rightarrow S_i)_{i = 1 \dots n},
a list of morphisms \iota = (\iota_i: S_i \rightarrow S)_{i = 1 \dots n},
a dependent function u_{\mathrm{in}} mapping every list \tau = ( \tau_i: T \rightarrow S_i )_{i = 1 \dots n} to a morphism u_{\mathrm{in}}(\tau): T \rightarrow S such that \pi_i \circ u_{\mathrm{in}}(\tau) \sim_{T,S_i} \tau_i for all i = 1, \dots, n.
a dependent function u_{\mathrm{out}} mapping every list \tau = ( \tau_i: S_i \rightarrow T )_{i = 1 \dots n} to a morphism u_{\mathrm{out}}(\tau): S \rightarrow T such that u_{\mathrm{out}}(\tau) \circ \iota_i \sim_{S_i, T} \tau_i for all i = 1, \dots, n,
such that
\sum_{i=1}^{n} \iota_i \circ \pi_i = \mathrm{id}_S,
\pi_j \circ \iota_i = \delta_{i,j},
where \delta_{i,j} \in \mathrm{Hom}( S_i, S_j ) is the identity if i=j, and 0 otherwise. The 5-tuple (S, \pi, \iota, u_{\mathrm{in}}, u_{\mathrm{out}}) is called a direct sum of D. We denote the object S of such a 5-tuple by \bigoplus_{i=1}^n S_i. We say that the morphisms u_{\mathrm{in}}(\tau), u_{\mathrm{out}}(\tau) are induced by the universal property of the direct sum. \\ \mathrm{DirectSum} is a functorial operation. This means: For (\mu_i: S_i \rightarrow S'_i)_{i=1\dots n}, we obtain a morphism \bigoplus_{i=1}^n S_i \rightarrow \bigoplus_{i=1}^n S_i'.
‣ DirectSumOp ( D, method_selection_object ) | ( operation ) |
Returns: an object
The argument is a list of objects D = (S_1, \dots, S_n) and an object for method selection. The output is the direct sum \bigoplus_{i=1}^n S_i.
‣ ProjectionInFactorOfDirectSum ( D, k ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \bigoplus_{i=1}^n S_i, S_k )
The arguments are a list of objects D = (S_1, \dots, S_n) and an integer k. The output is the k-th projection \pi_k: \bigoplus_{i=1}^n S_i \rightarrow S_k.
‣ ProjectionInFactorOfDirectSumOp ( D, k, method_selection_object ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \bigoplus_{i=1}^n S_i, S_k )
The arguments are a list of objects D = (S_1, \dots, S_n), an integer k, and an object for method selection. The output is the k-th projection \pi_k: \bigoplus_{i=1}^n S_i \rightarrow S_k.
‣ ProjectionInFactorOfDirectSumWithGivenDirectSum ( D, k, S ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( S, S_k )
The arguments are a list of objects D = (S_1, \dots, S_n), an integer k, and an object S = \bigoplus_{i=1}^n S_i. The output is the k-th projection \pi_k: S \rightarrow S_k.
‣ InjectionOfCofactorOfDirectSum ( D, k ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( S_k, \bigoplus_{i=1}^n S_i )
The arguments are a list of objects D = (S_1, \dots, S_n) and an integer k. The output is the k-th injection \iota_k: S_k \rightarrow \bigoplus_{i=1}^n S_i.
‣ InjectionOfCofactorOfDirectSumOp ( D, k, method_selection_object ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( S_k, \bigoplus_{i=1}^n S_i )
The arguments are a list of objects D = (S_1, \dots, S_n), an integer k, and an object for method selection. The output is the k-th injection \iota_k: S_k \rightarrow \bigoplus_{i=1}^n S_i.
‣ InjectionOfCofactorOfDirectSumWithGivenDirectSum ( D, k, S ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( S_k, S )
The arguments are a list of objects D = (S_1, \dots, S_n), an integer k, and an object S = \bigoplus_{i=1}^n S_i. The output is the k-th injection \iota_k: S_k \rightarrow S.
‣ UniversalMorphismIntoDirectSum ( arg ) | ( function ) |
Returns: a morphism in \mathrm{Hom}(T, \bigoplus_{i=1}^n S_i)
This is a convenience method. There are three different ways to use this method:
The arguments are a list of objects D = (S_1, \dots, S_n) and a list of morphisms \tau = ( \tau_i: T \rightarrow S_i )_{i = 1 \dots n}.
The argument is a list of morphisms \tau = ( \tau_i: T \rightarrow S_i )_{i = 1 \dots n}.
The arguments are morphisms \tau_1: T \rightarrow S_1, \dots, \tau_n: T \rightarrow S_n.
The output is the morphism u_{\mathrm{in}}(\tau): T \rightarrow \bigoplus_{i=1}^n S_i given by the universal property of the direct sum.
‣ UniversalMorphismIntoDirectSumOp ( D, tau, method_selection_object ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(T, \bigoplus_{i=1}^n S_i)
The arguments are a list of objects D = (S_1, \dots, S_n), a list of morphisms \tau = ( \tau_i: T \rightarrow S_i )_{i = 1 \dots n}, and an object for method selection. The output is the morphism u_{\mathrm{in}}(\tau): T \rightarrow \bigoplus_{i=1}^n S_i given by the universal property of the direct sum.
‣ UniversalMorphismIntoDirectSumWithGivenDirectSum ( D, tau, S ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(T, S)
The arguments are a list of objects D = (S_1, \dots, S_n), a list of morphisms \tau = ( \tau_i: T \rightarrow S_i )_{i = 1 \dots n}, and an object S = \bigoplus_{i=1}^n S_i. The output is the morphism u_{\mathrm{in}}(\tau): T \rightarrow S given by the universal property of the direct sum.
‣ UniversalMorphismFromDirectSum ( arg ) | ( function ) |
Returns: a morphism in \mathrm{Hom}(\bigoplus_{i=1}^n S_i, T)
This is a convenience method. There are three different ways to use this method:
The arguments are a list of objects D = (S_1, \dots, S_n) and a list of morphisms \tau = ( \tau_i: S_i \rightarrow T )_{i = 1 \dots n}.
The argument is a list of morphisms \tau = ( \tau_i: S_i \rightarrow T )_{i = 1 \dots n}.
The arguments are morphisms S_1 \rightarrow T, \dots, S_n \rightarrow T.
The output is the morphism u_{\mathrm{out}}(\tau): \bigoplus_{i=1}^n S_i \rightarrow T given by the universal property of the direct sum.
‣ UniversalMorphismFromDirectSumOp ( D, tau, method_selection_object ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\bigoplus_{i=1}^n S_i, T)
The arguments are a list of objects D = (S_1, \dots, S_n), a list of morphisms \tau = ( \tau_i: S_i \rightarrow T )_{i = 1 \dots n}, and an object for method selection. The output is the morphism u_{\mathrm{out}}(\tau): \bigoplus_{i=1}^n S_i \rightarrow T given by the universal property of the direct sum.
‣ UniversalMorphismFromDirectSumWithGivenDirectSum ( D, tau, S ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(S, T)
The arguments are a list of objects D = (S_1, \dots, S_n), a list of morphisms \tau = ( \tau_i: S_i \rightarrow T )_{i = 1 \dots n}, and an object S = \bigoplus_{i=1}^n S_i. The output is the morphism u_{\mathrm{out}}(\tau): S \rightarrow T given by the universal property of the direct sum.
‣ IsomorphismFromDirectSumToDirectProduct ( D ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \bigoplus_{i=1}^n S_i, \prod_{i=1}^{n}S_i )
The argument is a list of objects D = (S_1, \dots, S_n). The output is the canonical isomorphism \bigoplus_{i=1}^n S_i \rightarrow \prod_{i=1}^{n}S_i.
‣ IsomorphismFromDirectSumToDirectProductOp ( D, method_selection_object ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \bigoplus_{i=1}^n S_i, \prod_{i=1}^{n}S_i )
The arguments are a list of objects D = (S_1, \dots, S_n) and an object for method selection. The output is the canonical isomorphism \bigoplus_{i=1}^n S_i \rightarrow \prod_{i=1}^{n}S_i.
‣ IsomorphismFromDirectProductToDirectSum ( D ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \prod_{i=1}^{n}S_i, \bigoplus_{i=1}^n S_i )
The argument is a list of objects D = (S_1, \dots, S_n). The output is the canonical isomorphism \prod_{i=1}^{n}S_i \rightarrow \bigoplus_{i=1}^n S_i.
‣ IsomorphismFromDirectProductToDirectSumOp ( D, method_selection_object ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \prod_{i=1}^{n}S_i, \bigoplus_{i=1}^n S_i )
The argument is a list of objects D = (S_1, \dots, S_n) and an object for method selection. The output is the canonical isomorphism \prod_{i=1}^{n}S_i \rightarrow \bigoplus_{i=1}^n S_i.
‣ IsomorphismFromDirectSumToCoproduct ( D ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \bigoplus_{i=1}^n S_i, \bigsqcup_{i=1}^{n}S_i )
The argument is a list of objects D = (S_1, \dots, S_n). The output is the canonical isomorphism \bigoplus_{i=1}^n S_i \rightarrow \bigsqcup_{i=1}^{n}S_i.
‣ IsomorphismFromDirectSumToCoproductOp ( D, method_selection_object ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \bigoplus_{i=1}^n S_i, \bigsqcup_{i=1}^{n}S_i )
The argument is a list of objects D = (S_1, \dots, S_n) and an object for method selection. The output is the canonical isomorphism \bigoplus_{i=1}^n S_i \rightarrow \bigsqcup_{i=1}^{n}S_i.
‣ IsomorphismFromCoproductToDirectSum ( D ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \bigsqcup_{i=1}^{n}S_i, \bigoplus_{i=1}^n S_i )
The argument is a list of objects D = (S_1, \dots, S_n). The output is the canonical isomorphism \bigsqcup_{i=1}^{n}S_i \rightarrow \bigoplus_{i=1}^n S_i.
‣ IsomorphismFromCoproductToDirectSumOp ( D, method_selection_object ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \bigsqcup_{i=1}^{n}S_i, \bigoplus_{i=1}^n S_i )
The argument is a list of objects D = (S_1, \dots, S_n) and an object for method selection. The output is the canonical isomorphism \bigsqcup_{i=1}^{n}S_i \rightarrow \bigoplus_{i=1}^n S_i.
‣ MorphismBetweenDirectSums ( M ) | ( operation ) |
‣ MorphismBetweenDirectSums ( S, M, T ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\bigoplus_{i=1}^{m}A_i, \bigoplus_{j=1}^n B_j)
The argument M = ( ( \phi_{i,j}: A_i \rightarrow B_j )_{j = 1 \dots n} )_{i = 1 \dots m} is a list of lists of morphisms. The output is the morphism \bigoplus_{i=1}^{m}A_i \rightarrow \bigoplus_{j=1}^n B_j defined by the matrix M. The extra arguments S = \bigoplus_{i=1}^{m}A_i and T = \bigoplus_{j=1}^n B_j are source and target of the output, respectively. They must be provided in case M is an empty list or a list of empty lists.
‣ MorphismBetweenDirectSumsOp ( M, m, n, method_selection_morphism ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\bigoplus_{i=1}^{m}A_i, \bigoplus_{j=1}^n B_j)
The arguments are a list M = ( \phi_{1,1}, \phi_{1,2}, \dots, \phi_{1,n}, \phi_{2,1}, \dots, \phi_{m,n} ) of morphisms \phi_{i,j}: A_i \rightarrow B_j, an integer m, an integer n, and a method selection morphism. The output is the morphism \bigoplus_{i=1}^{m}A_i \rightarrow \bigoplus_{j=1}^n B_j defined by the list M regarded as a matrix of dimension m \times n.
‣ AddProjectionInFactorOfDirectSum ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation ProjectionInFactorOfDirectSum
. F: (D,k) \mapsto \pi_{k}.
‣ AddProjectionInFactorOfDirectSumWithGivenDirectSum ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation ProjectionInFactorOfDirectSumWithGivenDirectSum
. F: (D,k,S) \mapsto \pi_{k}.
‣ AddInjectionOfCofactorOfDirectSum ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation InjectionOfCofactorOfDirectSum
. F: (D,k) \mapsto \iota_{k}.
‣ AddInjectionOfCofactorOfDirectSumWithGivenDirectSum ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation InjectionOfCofactorOfDirectSumWithGivenDirectSum
. F: (D,k,S) \mapsto \iota_{k}.
‣ AddUniversalMorphismIntoDirectSum ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismIntoDirectSum
. F: (D,\tau) \mapsto u_{\mathrm{in}}(\tau).
‣ AddUniversalMorphismIntoDirectSumWithGivenDirectSum ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismIntoDirectSumWithGivenDirectSum
. F: (D,\tau,S) \mapsto u_{\mathrm{in}}(\tau).
‣ AddUniversalMorphismFromDirectSum ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismFromDirectSum
. F: (D,\tau) \mapsto u_{\mathrm{out}}(\tau).
‣ AddUniversalMorphismFromDirectSumWithGivenDirectSum ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismFromDirectSumWithGivenDirectSum
. F: (D,\tau,S) \mapsto u_{\mathrm{out}}(\tau).
‣ AddIsomorphismFromDirectSumToDirectProduct ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation IsomorphismFromDirectSumToDirectProduct
. F: D \mapsto (\bigoplus_{i=1}^n S_i \rightarrow \prod_{i=1}^{n}S_i).
‣ AddIsomorphismFromDirectProductToDirectSum ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation IsomorphismFromDirectProductToDirectSum
. F: D \mapsto ( \prod_{i=1}^{n}S_i \rightarrow \bigoplus_{i=1}^n S_i ).
‣ AddIsomorphismFromDirectSumToCoproduct ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation IsomorphismFromDirectSumToCoproduct
. F: D \mapsto ( \bigoplus_{i=1}^n S_i \rightarrow \bigsqcup_{i=1}^{n}S_i ).
‣ AddIsomorphismFromCoproductToDirectSum ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation IsomorphismFromCoproductToDirectSum
. F: D \mapsto ( \bigsqcup_{i=1}^{n}S_i \rightarrow \bigoplus_{i=1}^n S_i ).
‣ AddDirectSum ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation DirectSum
. F: D \mapsto \bigoplus_{i=1}^n S_i.
‣ DirectSumFunctorial ( L ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \bigoplus_{i=1}^n S_i, \bigoplus_{i=1}^n S_i' )
The argument is a list of morphisms L = ( \mu_1: S_1 \rightarrow S_1', \dots, \mu_n: S_n \rightarrow S_n' ). The output is a morphism \bigoplus_{i=1}^n S_i \rightarrow \bigoplus_{i=1}^n S_i' given by the functorality of the direct sum.
‣ DirectSumFunctorialWithGivenDirectSums ( d_1, L, d_2 ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( d_1, d_2 )
The arguments are an object d_1 = \bigoplus_{i=1}^n S_i, a list of morphisms L = ( \mu_1: S_1 \rightarrow S_1', \dots, \mu_n: S_n \rightarrow S_n' ), and an object d_2 = \bigoplus_{i=1}^n S_i'. The output is a morphism d_1 \rightarrow d_2 given by the functorality of the direct sum.
‣ AddDirectSumFunctorialWithGivenDirectSums ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation DirectSumFunctorialWithGivenDirectSums
. F: (\bigoplus_{i=1}^n S_i, ( \mu_1, \dots, \mu_n ), \bigoplus_{i=1}^n S_i') \mapsto (\bigoplus_{i=1}^n S_i \rightarrow \bigoplus_{i=1}^n S_i').
For a given list of objects D = ( I_1, \dots, I_n ), a coproduct of D consists of three parts:
an object I,
a list of morphisms \iota = ( \iota_i: I_i \rightarrow I )_{i = 1 \dots n}
a dependent function u mapping each list of morphisms \tau = ( \tau_i: I_i \rightarrow T ) to a morphism u( \tau ): I \rightarrow T such that u( \tau ) \circ \iota_i \sim_{I_i, T} \tau_i for all i = 1, \dots, n.
The triple ( I, \iota, u ) is called a coproduct of D if the morphisms u( \tau ) are uniquely determined up to congruence of morphisms. We denote the object I of such a triple by \bigsqcup_{i=1}^n I_i. We say that the morphism u( \tau ) is induced by the universal property of the coproduct. \\ \mathrm{Coproduct} is a functorial operation. This means: For (\mu_i: I_i \rightarrow I'_i)_{i=1\dots n}, we obtain a morphism \bigsqcup_{i=1}^n I_i \rightarrow \bigsqcup_{i=1}^n I_i'.
‣ Coproduct ( D ) | ( attribute ) |
Returns: an object
The argument is a list of objects D = ( I_1, \dots, I_n ). The output is the coproduct \bigsqcup_{i=1}^n I_i.
‣ Coproduct ( I1, I2 ) | ( operation ) |
Returns: an object
This is a convenience method. The arguments are two objects I_1, I_2. The output is the coproduct I_1 \bigsqcup I_2.
‣ Coproduct ( I1, I2 ) | ( operation ) |
Returns: an object
This is a convenience method. The arguments are three objects I_1, I_2, I_3. The output is the coproduct I_1 \bigsqcup I_2 \bigsqcup I_3.
‣ CoproductOp ( D, method_selection_object ) | ( operation ) |
Returns: an object
The arguments are a list of objects D = ( I_1, \dots, I_n ) and a method selection object. The output is the coproduct \bigsqcup_{i=1}^n I_i.
‣ InjectionOfCofactorOfCoproduct ( D, k ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(I_k, \bigsqcup_{i=1}^n I_i)
The arguments are a list of objects D = ( I_1, \dots, I_n ) and an integer k. The output is the k-th injection \iota_k: I_k \rightarrow \bigsqcup_{i=1}^n I_i.
‣ InjectionOfCofactorOfCoproductOp ( D, k, method_selection_object ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(I_k, \bigsqcup_{i=1}^n I_i)
The arguments are a list of objects D = ( I_1, \dots, I_n ), an integer k, and a method selection object. The output is the k-th injection \iota_k: I_k \rightarrow \bigsqcup_{i=1}^n I_i.
‣ InjectionOfCofactorOfCoproductWithGivenCoproduct ( D, k, I ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(I_k, I)
The arguments are a list of objects D = ( I_1, \dots, I_n ), an integer k, and an object I = \bigsqcup_{i=1}^n I_i. The output is the k-th injection \iota_k: I_k \rightarrow I.
‣ UniversalMorphismFromCoproduct ( arg ) | ( function ) |
Returns: a morphism in \mathrm{Hom}(\bigsqcup_{i=1}^n I_i, T)
This is a convenience method. There are three different ways to use this method.
The arguments are a list of objects D = ( I_1, \dots, I_n ), a list of morphisms \tau = ( \tau_i: I_i \rightarrow T ).
The argument is a list of morphisms \tau = ( \tau_i: I_i \rightarrow T ).
The arguments are morphisms \tau_1: I_1 \rightarrow T, \dots, \tau_n: I_n \rightarrow T
The output is the morphism u( \tau ): \bigsqcup_{i=1}^n I_i \rightarrow T given by the universal property of the coproduct.
‣ UniversalMorphismFromCoproductOp ( D, tau, method_selection_object ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\bigsqcup_{i=1}^n I_i, T)
The arguments are a list of objects D = ( I_1, \dots, I_n ), a list of morphisms \tau = ( \tau_i: I_i \rightarrow T ), and a method selection object. The output is the morphism u( \tau ): \bigsqcup_{i=1}^n I_i \rightarrow T given by the universal property of the coproduct.
‣ UniversalMorphismFromCoproductWithGivenCoproduct ( D, tau, I ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(I, T)
The arguments are a list of objects D = ( I_1, \dots, I_n ), a list of morphisms \tau = ( \tau_i: I_i \rightarrow T ), and an object I = \bigsqcup_{i=1}^n I_i. The output is the morphism u( \tau ): I \rightarrow T given by the universal property of the coproduct.
‣ AddCoproduct ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation Coproduct
. F: ( (I_1, \dots, I_n) ) \mapsto I.
‣ AddInjectionOfCofactorOfCoproduct ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation InjectionOfCofactorOfCoproduct
. F: ( (I_1, \dots, I_n), i ) \mapsto \iota_i.
‣ AddInjectionOfCofactorOfCoproductWithGivenCoproduct ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation InjectionOfCofactorOfCoproductWithGivenCoproduct
. F: ( (I_1, \dots, I_n), i, I ) \mapsto \iota_i.
‣ AddUniversalMorphismFromCoproduct ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismFromCoproduct
. F: ( (I_1, \dots, I_n), \tau ) \mapsto u( \tau ).
‣ AddUniversalMorphismFromCoproductWithGivenCoproduct ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismFromCoproductWithGivenCoproduct
. F: ( (I_1, \dots, I_n), \tau, I ) \mapsto u( \tau ).
‣ CoproductFunctorial ( L ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\bigsqcup_{i=1}^n I_i, \bigsqcup_{i=1}^n I_i')
The argument is a list L = ( \mu_1: I_1 \rightarrow I_1', \dots, \mu_n: I_n \rightarrow I_n' ). The output is a morphism \bigsqcup_{i=1}^n I_i \rightarrow \bigsqcup_{i=1}^n I_i' given by the functorality of the coproduct.
‣ CoproductFunctorialWithGivenCoproducts ( s, L, r ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(s, r)
The arguments are an object s = \bigsqcup_{i=1}^n I_i, a list L = ( \mu_1: I_1 \rightarrow I_1', \dots, \mu_n: I_n \rightarrow I_n' ), and an object r = \bigsqcup_{i=1}^n I_i'. The output is a morphism \bigsqcup_{i=1}^n I_i \rightarrow \bigsqcup_{i=1}^n I_i' given by the functorality of the coproduct.
‣ AddCoproductFunctorialWithGivenCoproducts ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation CoproductFunctorialWithGivenCoproducts
. F: (\bigsqcup_{i=1}^n I_i, (\mu_1, \dots, \mu_n), \bigsqcup_{i=1}^n I_i') \rightarrow (\bigsqcup_{i=1}^n I_i \rightarrow \bigsqcup_{i=1}^n I_i').
For a given list of objects D = ( P_1, \dots, P_n ), a direct product of D consists of three parts:
an object P,
a list of morphisms \pi = ( \pi_i: P \rightarrow P_i )_{i = 1 \dots n}
a dependent function u mapping each list of morphisms \tau = ( \tau_i: T \rightarrow P_i )_{i = 1, \dots, n} to a morphism u(\tau): T \rightarrow P such that \pi_i \circ u( \tau ) \sim_{T,P_i} \tau_i for all i = 1, \dots, n.
The triple ( P, \pi, u ) is called a direct product of D if the morphisms u( \tau ) are uniquely determined up to congruence of morphisms. We denote the object P of such a triple by \prod_{i=1}^n P_i. We say that the morphism u( \tau ) is induced by the universal property of the direct product. \\ \mathrm{DirectProduct} is a functorial operation. This means: For (\mu_i: P_i \rightarrow P'_i)_{i=1\dots n}, we obtain a morphism \prod_{i=1}^n P_i \rightarrow \prod_{i=1}^n P_i'.
‣ DirectProductOp ( D ) | ( operation ) |
Returns: an object
The arguments are a list of objects D = ( P_1, \dots, P_n ) and an object for method selection. The output is the direct product \prod_{i=1}^n P_i.
‣ ProjectionInFactorOfDirectProduct ( D, k ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\prod_{i=1}^n P_i, P_k)
The arguments are a list of objects D = ( P_1, \dots, P_n ) and an integer k. The output is the k-th projection \pi_k: \prod_{i=1}^n P_i \rightarrow P_k.
‣ ProjectionInFactorOfDirectProductOp ( D, k, method_selection_object ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\prod_{i=1}^n P_i, P_k)
The arguments are a list of objects D = ( P_1, \dots, P_n ), an integer k, and an object for method selection. The output is the k-th projection \pi_k: \prod_{i=1}^n P_i \rightarrow P_k.
‣ ProjectionInFactorOfDirectProductWithGivenDirectProduct ( D, k, P ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(P, P_k)
The arguments are a list of objects D = ( P_1, \dots, P_n ), an integer k, and an object P = \prod_{i=1}^n P_i. The output is the k-th projection \pi_k: P \rightarrow P_k.
‣ UniversalMorphismIntoDirectProduct ( arg ) | ( function ) |
Returns: a morphism in \mathrm{Hom}(T, \prod_{i=1}^n P_i)
This is a convenience method. There are three different ways to use this method.
The arguments are a list of objects D = ( P_1, \dots, P_n ) and a list of morphisms \tau = ( \tau_i: T \rightarrow P_i )_{i = 1, \dots, n}.
The argument is a list of morphisms \tau = ( \tau_i: T \rightarrow P_i )_{i = 1, \dots, n}.
The arguments are morphisms \tau_1: T \rightarrow P_1, \dots, \tau_n: T \rightarrow P_n.
The output is the morphism u(\tau): T \rightarrow \prod_{i=1}^n P_i given by the universal property of the direct product.
‣ UniversalMorphismIntoDirectProductOp ( D, tau, method_selection_object ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(T, \prod_{i=1}^n P_i)
The arguments are a list of objects D = ( P_1, \dots, P_n ), a list of morphisms \tau = ( \tau_i: T \rightarrow P_i )_{i = 1, \dots, n}, and an object for method selection. The output is the morphism u(\tau): T \rightarrow \prod_{i=1}^n P_i given by the universal property of the direct product.
‣ UniversalMorphismIntoDirectProductWithGivenDirectProduct ( D, tau, P ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(T, \prod_{i=1}^n P_i)
The arguments are a list of objects D = ( P_1, \dots, P_n ), a list of morphisms \tau = ( \tau_i: T \rightarrow P_i )_{i = 1, \dots, n}, and an object P = \prod_{i=1}^n P_i. The output is the morphism u(\tau): T \rightarrow \prod_{i=1}^n P_i given by the universal property of the direct product.
‣ AddDirectProduct ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation DirectProduct
. F: ( (P_1, \dots, P_n) ) \mapsto P
‣ AddProjectionInFactorOfDirectProduct ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation ProjectionInFactorOfDirectProduct
. F: ( (P_1, \dots, P_n),k ) \mapsto \pi_k
‣ AddProjectionInFactorOfDirectProductWithGivenDirectProduct ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation ProjectionInFactorOfDirectProductWithGivenDirectProduct
. F: ( (P_1, \dots, P_n),k,P ) \mapsto \pi_k
‣ AddUniversalMorphismIntoDirectProduct ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismIntoDirectProduct
. F: ( (P_1, \dots, P_n), \tau ) \mapsto u( \tau )
‣ AddUniversalMorphismIntoDirectProductWithGivenDirectProduct ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismIntoDirectProductWithGivenDirectProduct
. F: ( (P_1, \dots, P_n), \tau, P ) \mapsto u( \tau )
‣ DirectProductFunctorial ( L ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \prod_{i=1}^n P_i, \prod_{i=1}^n P_i' )
The argument is a list of morphisms L = (\mu_i: P_i \rightarrow P'_i)_{i=1\dots n}. The output is a morphism \prod_{i=1}^n P_i \rightarrow \prod_{i=1}^n P_i' given by the functorality of the direct product.
‣ DirectProductFunctorialWithGivenDirectProducts ( s, L, r ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( s, r )
The arguments are an object s = \prod_{i=1}^n P_i, a list of morphisms L = (\mu_i: P_i \rightarrow P'_i)_{i=1\dots n}, and an object r = \prod_{i=1}^n P_i'. The output is a morphism \prod_{i=1}^n P_i \rightarrow \prod_{i=1}^n P_i' given by the functorality of the direct product.
‣ AddDirectProductFunctorialWithGivenDirectProducts ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation DirectProductFunctorialWithGivenDirectProducts
. F: ( \prod_{i=1}^n P_i, (\mu_i: P_i \rightarrow P'_i)_{i=1\dots n}, \prod_{i=1}^n P_i' ) \mapsto (\prod_{i=1}^n P_i \rightarrow \prod_{i=1}^n P_i')
For a given list of morphisms D = ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n}, a fiber product of D consists of three parts:
an object P,
a list of morphisms \pi = ( \pi_i: P \rightarrow P_i )_{i = 1 \dots n} such that \beta_i \circ \pi_i \sim_{P, B} \beta_j \circ \pi_j for all pairs i,j.
a dependent function u mapping each list of morphisms \tau = ( \tau_i: T \rightarrow P_i ) such that \beta_i \circ \tau_i \sim_{T, B} \beta_j \circ \tau_j for all pairs i,j to a morphism u( \tau ): T \rightarrow P such that \pi_i \circ u( \tau ) \sim_{T, P_i} \tau_i for all i = 1, \dots, n.
The triple ( P, \pi, u ) is called a fiber product of D if the morphisms u( \tau ) are uniquely determined up to congruence of morphisms. We denote the object P of such a triple by \mathrm{FiberProduct}(D). We say that the morphism u( \tau ) is induced by the universal property of the fiber product. \\ \mathrm{FiberProduct} is a functorial operation. This means: For a second diagram D' = (\beta_i': P_i' \rightarrow B')_{i = 1 \dots n} and a natural morphism between pullback diagrams (i.e., a collection of morphisms (\mu_i: P_i \rightarrow P'_i)_{i=1\dots n} and \beta: B \rightarrow B' such that \beta_i' \circ \mu_i \sim_{P_i,B'} \beta \circ \beta_i for i = 1, \dots, n) we obtain a morphism \mathrm{FiberProduct}( D ) \rightarrow \mathrm{FiberProduct}( D' ).
‣ IsomorphismFromFiberProductToKernelOfDiagonalDifference ( D ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{FiberProduct}(D), \Delta)
The argument is a list of morphisms D = ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n}. The output is a morphism \mathrm{FiberProduct}(D) \rightarrow \Delta, where \Delta denotes the kernel object equalizing the morphisms \beta_i.
‣ IsomorphismFromFiberProductToKernelOfDiagonalDifferenceOp ( D, method_selection_morphism ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{FiberProduct}(D), \Delta)
The arguments are a list of morphisms D = ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n} and a morphism for method selection. The output is a morphism \mathrm{FiberProduct}(D) \rightarrow \Delta, where \Delta denotes the kernel object equalizing the morphisms \beta_i.
‣ AddIsomorphismFromFiberProductToKernelOfDiagonalDifference ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation IsomorphismFromFiberProductToKernelOfDiagonalDifference
. F: ( ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n} ) \mapsto \mathrm{FiberProduct}(D) \rightarrow \Delta
‣ IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct ( D ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\Delta, \mathrm{FiberProduct}(D))
The argument is a list of morphisms D = ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n}. The output is a morphism \Delta \rightarrow \mathrm{FiberProduct}(D), where \Delta denotes the kernel object equalizing the morphisms \beta_i.
‣ IsomorphismFromKernelOfDiagonalDifferenceToFiberProductOp ( D ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\Delta, \mathrm{FiberProduct}(D))
The argument is a list of morphisms D = ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n} and a morphism for method selection. The output is a morphism \Delta \rightarrow \mathrm{FiberProduct}(D), where \Delta denotes the kernel object equalizing the morphisms \beta_i.
‣ AddIsomorphismFromKernelOfDiagonalDifferenceToFiberProduct ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct
. F: ( ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n} ) \mapsto \Delta \rightarrow \mathrm{FiberProduct}(D)
‣ DirectSumDiagonalDifference ( D ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \bigoplus_{i=1}^n P_i, B )
The argument is a list of morphisms D = ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n}. The output is a morphism \bigoplus_{i=1}^n P_i \rightarrow B such that its kernel equalizes the \beta_i.
‣ DirectSumDiagonalDifferenceOp ( D, method_selection_morphism ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \bigoplus_{i=1}^n P_i, B )
The argument is a list of morphisms D = ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n} and a morphism for method selection. The output is a morphism \bigoplus_{i=1}^n P_i \rightarrow B such that its kernel equalizes the \beta_i.
‣ AddDirectSumDiagonalDifference ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation DirectSumDiagonalDifference
. F: ( D ) \mapsto \mathrm{DirectSumDiagonalDifference}(D)
‣ FiberProductEmbeddingInDirectSum ( D ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \mathrm{FiberProduct}(D), \bigoplus_{i=1}^n P_i )
The argument is a list of morphisms D = ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n}. The output is the natural embedding \mathrm{FiberProduct}(D) \rightarrow \bigoplus_{i=1}^n P_i.
‣ FiberProductEmbeddingInDirectSumOp ( D, method_selection_morphism ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \mathrm{FiberProduct}(D), \bigoplus_{i=1}^n P_i )
The argument is a list of morphisms D = ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n} and a morphism for method selection. The output is the natural embedding \mathrm{FiberProduct}(D) \rightarrow \bigoplus_{i=1}^n P_i.
‣ AddFiberProductEmbeddingInDirectSum ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation FiberProductEmbeddingInDirectSum
. F: ( ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n} ) \mapsto \mathrm{FiberProduct}(D) \rightarrow \bigoplus_{i=1}^n P_i
‣ FiberProduct ( arg ) | ( function ) |
Returns: an object
This is a convenience method. There are two different ways to use this method:
The argument is a list of morphisms D = ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n}.
The arguments are morphisms \beta_1: P_1 \rightarrow B, \dots, \beta_n: P_n \rightarrow B.
The output is the fiber product \mathrm{FiberProduct}(D).
‣ FiberProductOp ( D, method_selection_morphism ) | ( operation ) |
Returns: an object
The arguments are a list of morphisms D = ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n} and a morphism for method selection. The output is the fiber product \mathrm{FiberProduct}(D).
‣ ProjectionInFactorOfFiberProduct ( D, k ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \mathrm{FiberProduct}(D), P_k )
The arguments are a list of morphisms D = ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n} and an integer k. The output is the k-th projection \pi_{k}: \mathrm{FiberProduct}(D) \rightarrow P_k.
‣ ProjectionInFactorOfFiberProductOp ( D, k, method_selection_morphism ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \mathrm{FiberProduct}(D), P_k )
The arguments are a list of morphisms D = ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n}, an integer k, and a morphism for method selection. The output is the k-th projection \pi_{k}: \mathrm{FiberProduct}(D) \rightarrow P_k.
‣ ProjectionInFactorOfFiberProductWithGivenFiberProduct ( D, k, P ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( P, P_k )
The arguments are a list of morphisms D = ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n}, an integer k, and an object P = \mathrm{FiberProduct}(D). The output is the k-th projection \pi_{k}: P \rightarrow P_k.
‣ UniversalMorphismIntoFiberProduct ( arg ) | ( function ) |
This is a convenience method. There are three different ways to use this method:
The arguments are a list of morphisms D = ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n} and a list of morphisms \tau = ( \tau_i: T \rightarrow P_i ) such that \beta_i \circ \tau_i \sim_{T, B} \beta_j \circ \tau_j for all pairs i,j. The output is the morphism u( \tau ): T \rightarrow \mathrm{FiberProduct}(D) given by the universal property of the fiber product.
The arguments are a list of morphisms D = ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n} and morphisms \tau_1: T \rightarrow P_1, \dots, \tau_n: T \rightarrow P_n such that \beta_i \circ \tau_i \sim_{T, B} \beta_j \circ \tau_j for all pairs i,j. The output is the morphism u( \tau ): T \rightarrow \mathrm{FiberProduct}(D) given by the universal property of the fiber product.
‣ UniversalMorphismIntoFiberProductOp ( D, tau, method_selection_morphism ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( T, \mathrm{FiberProduct}(D) )
The arguments are a list of morphisms D = ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n}, a list of morphisms \tau = ( \tau_i: T \rightarrow P_i ) such that \beta_i \circ \tau_i \sim_{T, B} \beta_j \circ \tau_j for all pairs i,j, and a morphism for method selection. The output is the morphism u( \tau ): T \rightarrow \mathrm{FiberProduct}(D) given by the universal property of the fiber product.
‣ UniversalMorphismIntoFiberProductWithGivenFiberProduct ( D, tau, P ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( T, P )
The arguments are a list of morphisms D = ( \beta_i: P_i \rightarrow B )_{i = 1 \dots n}, a list of morphisms \tau = ( \tau_i: T \rightarrow P_i ) such that \beta_i \circ \tau_i \sim_{T, B} \beta_j \circ \tau_j for all pairs i,j, and an object P = \mathrm{FiberProduct}(D). The output is the morphism u( \tau ): T \rightarrow P given by the universal property of the fiber product.
‣ AddFiberProduct ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation FiberProduct
. F: ( (\beta_i: P_i \rightarrow B)_{i = 1 \dots n} ) \mapsto P
‣ AddProjectionInFactorOfFiberProduct ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation ProjectionInFactorOfFiberProduct
. F: ( (\beta_i: P_i \rightarrow B)_{i = 1 \dots n}, k ) \mapsto \pi_k
‣ AddProjectionInFactorOfFiberProductWithGivenFiberProduct ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation ProjectionInFactorOfFiberProductWithGivenFiberProduct
. F: ( (\beta_i: P_i \rightarrow B)_{i = 1 \dots n}, k,P ) \mapsto \pi_k
‣ AddUniversalMorphismIntoFiberProduct ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismIntoFiberProduct
. F: ( (\beta_i: P_i \rightarrow B)_{i = 1 \dots n}, \tau ) \mapsto u(\tau)
‣ AddUniversalMorphismIntoFiberProductWithGivenFiberProduct ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismIntoFiberProductWithGivenFiberProduct
. F: ( (\beta_i: P_i \rightarrow B)_{i = 1 \dots n}, \tau, P ) \mapsto u(\tau)
‣ FiberProductFunctorial ( L ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{FiberProduct}( ( \beta_i )_{i=1 \dots n} ), \mathrm{FiberProduct}( ( \beta_i' )_{i=1 \dots n} ))
The argument is a list of triples of morphisms L = ( (\beta_i: P_i \rightarrow B, \mu_i: P_i \rightarrow P_i', \beta_i': P_i' \rightarrow B')_{i = 1 \dots n} ) such that there exists a morphism \beta: B \rightarrow B' such that \beta_i' \circ \mu_i \sim_{P_i,B'} \beta \circ \beta_i for i = 1, \dots, n. The output is the morphism \mathrm{FiberProduct}( ( \beta_i )_{i=1 \dots n} ) \rightarrow \mathrm{FiberProduct}( ( \beta_i' )_{i=1 \dots n} ) given by the functorality of the fiber product.
‣ FiberProductFunctorialWithGivenFiberProducts ( s, L, r ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(s, r)
The arguments are an object s = \mathrm{FiberProduct}( ( \beta_i )_{i=1 \dots n} ), a list of triples of morphisms L = ( (\beta_i: P_i \rightarrow B, \mu_i: P_i \rightarrow P_i', \beta_i': P_i' \rightarrow B')_{i = 1 \dots n} ) such that there exists a morphism \beta: B \rightarrow B' such that \beta_i' \circ \mu_i \sim_{P_i,B'} \beta \circ \beta_i for i = 1, \dots, n, and an object r = \mathrm{FiberProduct}( ( \beta_i' )_{i=1 \dots n} ). The output is the morphism s \rightarrow r given by the functorality of the fiber product.
‣ AddFiberProductFunctorialWithGivenFiberProducts ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation FiberProductFunctorialWithGivenFiberProducts
. F: ( \mathrm{FiberProduct}( ( \beta_i )_{i=1 \dots n} ), (\beta_i: P_i \rightarrow B, \mu_i: P_i \rightarrow P_i', \beta_i': P_i' \rightarrow B')_{i = 1 \dots n}, \mathrm{FiberProduct}( ( \beta_i' )_{i=1 \dots n} ) ) \mapsto (\mathrm{FiberProduct}( ( \beta_i )_{i=1 \dots n} ) \rightarrow \mathrm{FiberProduct}( ( \beta_i' )_{i=1 \dots n} ) )
For a given list of morphisms D = ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n}, a pushout of D consists of three parts:
an object I,
a list of morphisms \iota = ( \iota_i: I_i \rightarrow I )_{i = 1 \dots n} such that \iota_i \circ \beta_i \sim_{B,I} \iota_j \circ \beta_j for all pairs i,j,
a dependent function u mapping each list of morphisms \tau = ( \tau_i: I_i \rightarrow T )_{i = 1 \dots n} such that \tau_i \circ \beta_i \sim_{B,T} \tau_j \circ \beta_j to a morphism u( \tau ): I \rightarrow T such that u( \tau ) \circ \iota_i \sim_{I_i, T} \tau_i for all i = 1, \dots, n.
The triple ( I, \iota, u ) is called a pushout of D if the morphisms u( \tau ) are uniquely determined up to congruence of morphisms. We denote the object I of such a triple by \mathrm{Pushout}(D). We say that the morphism u( \tau ) is induced by the universal property of the pushout. \\ \mathrm{Pushout} is a functorial operation. This means: For a second diagram D' = (\beta_i': B' \rightarrow I_i')_{i = 1 \dots n} and a natural morphism between pushout diagrams (i.e., a collection of morphisms (\mu_i: I_i \rightarrow I'_i)_{i=1\dots n} and \beta: B \rightarrow B' such that \beta_i' \circ \beta \sim_{B, I_i'} \mu_i \circ \beta_i for i = 1, \dots n) we obtain a morphism \mathrm{Pushout}( D ) \rightarrow \mathrm{Pushout}( D' ).
‣ IsomorphismFromPushoutToCokernelOfDiagonalDifference ( D ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \mathrm{Pushout}(D), \Delta)
The argument is a list of morphisms D = ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n}. The output is a morphism \mathrm{Pushout}(D) \rightarrow \Delta, where \Delta denotes the cokernel object coequalizing the morphisms \beta_i.
‣ IsomorphismFromPushoutToCokernelOfDiagonalDifferenceOp ( D, method_selection_morphism ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \mathrm{Pushout}(D), \Delta)
The argument is a list of morphisms D = ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n} and a morphism for method selection. The output is a morphism \mathrm{Pushout}(D) \rightarrow \Delta, where \Delta denotes the cokernel object coequalizing the morphisms \beta_i.
‣ AddIsomorphismFromPushoutToCokernelOfDiagonalDifference ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation IsomorphismFromPushoutToCokernelOfDiagonalDifference
. F: ( ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n} ) \mapsto (\mathrm{Pushout}(D) \rightarrow \Delta)
‣ IsomorphismFromCokernelOfDiagonalDifferenceToPushout ( D ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \Delta, \mathrm{Pushout}(D))
The argument is a list of morphisms D = ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n}. The output is a morphism \Delta \rightarrow \mathrm{Pushout}(D), where \Delta denotes the cokernel object coequalizing the morphisms \beta_i.
‣ IsomorphismFromCokernelOfDiagonalDifferenceToPushoutOp ( D, method_selection_morphism ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \Delta, \mathrm{Pushout}(D))
The argument is a list of morphisms D = ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n} and a morphism for method selection. The output is a morphism \Delta \rightarrow \mathrm{Pushout}(D), where \Delta denotes the cokernel object coequalizing the morphisms \beta_i.
‣ AddIsomorphismFromCokernelOfDiagonalDifferenceToPushout ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation IsomorphismFromCokernelOfDiagonalDifferenceToPushout
. F: ( ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n} ) \mapsto (\Delta \rightarrow \mathrm{Pushout}(D))
‣ DirectSumCodiagonalDifference ( D ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(B, \bigoplus_{i=1}^n I_i)
The argument is a list of morphisms D = ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n}. The output is a morphism B \rightarrow \bigoplus_{i=1}^n I_i such that its cokernel coequalizes the \beta_i.
‣ DirectSumCodiagonalDifferenceOp ( D, method_selection_morphism ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(B, \bigoplus_{i=1}^n I_i)
The argument is a list of morphisms D = ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n} and a morphism for method selection. The output is a morphism B \rightarrow \bigoplus_{i=1}^n I_i such that its cokernel coequalizes the \beta_i.
‣ AddDirectSumCodiagonalDifference ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation DirectSumCodiagonalDifference
. F: ( D ) \mapsto \mathrm{DirectSumCodiagonalDifference}(D)
‣ DirectSumProjectionInPushout ( D ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \bigoplus_{i=1}^n I_i, \mathrm{Pushout}(D) )
The argument is a list of morphisms D = ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n}. The output is the natural projection \bigoplus_{i=1}^n I_i \rightarrow \mathrm{Pushout}(D).
‣ DirectSumProjectionInPushoutOp ( D, method_selection_morphism ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \bigoplus_{i=1}^n I_i, \mathrm{Pushout}(D) )
The argument is a list of morphisms D = ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n} and a morphism for method selection. The output is the natural projection \bigoplus_{i=1}^n I_i \rightarrow \mathrm{Pushout}(D).
‣ AddDirectSumProjectionInPushout ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation DirectSumProjectionInPushout
. F: ( ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n} ) \mapsto (\bigoplus_{i=1}^n I_i \rightarrow \mathrm{Pushout}(D))
‣ Pushout ( D ) | ( operation ) |
Returns: an object
The argument is a list of morphisms D = ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n} The output is the pushout \mathrm{Pushout}(D).
‣ Pushout ( D ) | ( operation ) |
Returns: an object
This is a convenience method. The arguments are a morphism \alpha and a morphism \beta. The output is the pushout \mathrm{Pushout}(\alpha, \beta).
‣ PushoutOp ( D ) | ( operation ) |
Returns: an object
The arguments are a list of morphisms D = ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n} and a morphism for method selection. The output is the pushout \mathrm{Pushout}(D).
‣ InjectionOfCofactorOfPushout ( D, k ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( I_k, \mathrm{Pushout}( D ) ).
The arguments are a list of morphisms D = ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n} and an integer k. The output is the k-th injection \iota_k: I_k \rightarrow \mathrm{Pushout}( D ).
‣ InjectionOfCofactorOfPushoutOp ( D, k, method_selection_morphism ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( I_k, \mathrm{Pushout}( D ) ).
The arguments are a list of morphisms D = ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n}, an integer k, and a morphism for method selection. The output is the k-th injection \iota_k: I_k \rightarrow \mathrm{Pushout}( D ).
‣ InjectionOfCofactorOfPushoutWithGivenPushout ( D, k, I ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( I_k, \mathrm{Pushout}( D ) ).
The arguments are a list of morphisms D = ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n}, an integer k, and an object I = \mathrm{Pushout}(D). The output is the k-th injection \iota_k: I_k \rightarrow \mathrm{Pushout}( D ).
‣ UniversalMorphismFromPushout ( arg ) | ( function ) |
This is a convenience method. There are three different ways to use this method:
The arguments are a list of morphisms D = ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n} and a list of morphisms \tau = ( \tau_i: I_i \rightarrow T )_{i = 1 \dots n} such that \tau_i \circ \beta_i \sim_{B,T} \tau_j \circ \beta_j. The output is the morphism u( \tau ): \mathrm{Pushout}(D) \rightarrow T given by the universal property of the pushout.
The arguments are a list of morphisms D = ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n} and morphisms \tau_1: I_1 \rightarrow T, \dots, \tau_n: I_n \rightarrow T such that \tau_i \circ \beta_i \sim_{B,T} \tau_j \circ \beta_j. The output is the morphism u( \tau ): \mathrm{Pushout}(D) \rightarrow T given by the universal property of the pushout.
‣ UniversalMorphismFromPushoutOp ( D, tau, method_selection_morphism ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( \mathrm{Pushout}(D), T )
The arguments are a list of morphisms D = ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n}, a list of morphisms \tau = ( \tau_i: I_i \rightarrow T )_{i = 1 \dots n} such that \tau_i \circ \beta_i \sim_{B,T} \tau_j \circ \beta_j, and a morphism for method selection. The output is the morphism u( \tau ): \mathrm{Pushout}(D) \rightarrow T given by the universal property of the pushout.
‣ UniversalMorphismFromPushoutWithGivenPushout ( D, tau, I ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}( I, T )
The arguments are a list of morphisms D = ( \beta_i: B \rightarrow I_i )_{i = 1 \dots n}, a list of morphisms \tau = ( \tau_i: I_i \rightarrow T )_{i = 1 \dots n} such that \tau_i \circ \beta_i \sim_{B,T} \tau_j \circ \beta_j, and an object I = \mathrm{Pushout}(D). The output is the morphism u( \tau ): I \rightarrow T given by the universal property of the pushout.
‣ AddPushout ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation Pushout
. F: ( (\beta_i: B \rightarrow I_i)_{i = 1 \dots n} ) \mapsto I
‣ AddInjectionOfCofactorOfPushout ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation InjectionOfCofactorOfPushout
. F: ( (\beta_i: B \rightarrow I_i)_{i = 1 \dots n}, k ) \mapsto \iota_k
‣ AddInjectionOfCofactorOfPushoutWithGivenPushout ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation InjectionOfCofactorOfPushoutWithGivenPushout
. F: ( (\beta_i: B \rightarrow I_i)_{i = 1 \dots n}, k, I ) \mapsto \iota_k
‣ AddUniversalMorphismFromPushout ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismFromPushout
. F: ( (\beta_i: B \rightarrow I_i)_{i = 1 \dots n}, \tau ) \mapsto u(\tau)
‣ AddUniversalMorphismFromPushoutWithGivenPushout ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismFromPushout
. F: ( (\beta_i: B \rightarrow I_i)_{i = 1 \dots n}, \tau, I ) \mapsto u(\tau)
‣ PushoutFunctorial ( L ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{Pushout}( ( \beta_i )_{i=1}^n ), \mathrm{Pushout}( ( \beta_i' )_{i=1}^n ))
The argument is a list L = ( ( \beta_i: B \rightarrow I_i, \mu_i: I_i \rightarrow I_i', \beta_i': B' \rightarrow I_i' )_{i = 1 \dots n} ) such that there exists a morphism \beta: B \rightarrow B' such that \beta_i' \circ \beta \sim_{B, I_i'} \mu_i \circ \beta_i for i = 1, \dots n. The output is the morphism \mathrm{Pushout}( ( \beta_i )_{i=1}^n ) \rightarrow \mathrm{Pushout}( ( \beta_i' )_{i=1}^n ) given by the functorality of the pushout.
‣ PushoutFunctorialWithGivenPushouts ( s, L, r ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(s, r)
The arguments are an object s = \mathrm{Pushout}( ( \beta_i )_{i=1}^n ), a list L = ( ( \beta_i: B \rightarrow I_i, \mu_i: I_i \rightarrow I_i', \beta_i': B' \rightarrow I_i' )_{i = 1 \dots n} ) such that there exists a morphism \beta: B \rightarrow B' such that \beta_i' \circ \beta \sim_{B, I_i'} \mu_i \circ \beta_i for i = 1, \dots n, and an object r = \mathrm{Pushout}( ( \beta_i' )_{i=1}^n ). The output is the morphism s \rightarrow r given by the functorality of the pushout.
‣ AddPushoutFunctorialWithGivenPushouts ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation PushoutFunctorial
. F: ( \mathrm{Pushout}( ( \beta_i )_{i=1}^n ), ( \beta_i: B \rightarrow I_i, \mu_i: I_i \rightarrow I_i', \beta_i': B' \rightarrow I_i' )_{i = 1 \dots n}, \mathrm{Pushout}( ( \beta_i' )_{i=1}^n ) ) \mapsto (\mathrm{Pushout}( ( \beta_i )_{i=1}^n ) \rightarrow \mathrm{Pushout}( ( \beta_i' )_{i=1}^n ) )
For a given morphism \alpha: A \rightarrow B, an image of \alpha consists of four parts:
an object I,
a morphism c: A \rightarrow I,
a monomorphism \iota: I \hookrightarrow B such that \iota \circ c \sim_{A,B} \alpha,
a dependent function u mapping each pair of morphisms \tau = ( \tau_1: A \rightarrow T, \tau_2: T \hookrightarrow B ) where \tau_2 is a monomorphism such that \tau_2 \circ \tau_1 \sim_{A,B} \alpha to a morphism u(\tau): I \rightarrow T such that \tau_2 \circ u(\tau) \sim_{I,B} \iota and u(\tau) \circ c \sim_{A,T} \tau_1.
The 4-tuple ( I, c, \iota, u ) is called an image of \alpha if the morphisms u( \tau ) are uniquely determined up to congruence of morphisms. We denote the object I of such a 4-tuple by \mathrm{im}(\alpha). We say that the morphism u( \tau ) is induced by the universal property of the image.
‣ IsomorphismFromImageObjectToKernelOfCokernel ( alpha ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}( \mathrm{im}(\alpha), \mathrm{KernelObject}( \mathrm{CokernelProjection}( \alpha ) ) )
The argument is a morphism \alpha. The output is the canonical morphism \mathrm{im}(\alpha) \rightarrow \mathrm{KernelObject}( \mathrm{CokernelProjection}( \alpha ) ).
‣ AddIsomorphismFromImageObjectToKernelOfCokernel ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation IsomorphismFromImageObjectToKernelOfCokernel
. F: \alpha \mapsto ( \mathrm{im}(\alpha) \rightarrow \mathrm{KernelObject}( \mathrm{CokernelProjection}( \alpha ) ) )
‣ IsomorphismFromKernelOfCokernelToImageObject ( alpha ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}( \mathrm{KernelObject}( \mathrm{CokernelProjection}( \alpha ) ), \mathrm{im}(\alpha) )
The argument is a morphism \alpha. The output is the canonical morphism \mathrm{KernelObject}( \mathrm{CokernelProjection}( \alpha ) ) \rightarrow \mathrm{im}(\alpha).
‣ AddIsomorphismFromKernelOfCokernelToImageObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation IsomorphismFromKernelOfCokernelToImageObject
. F: \alpha \mapsto ( \mathrm{KernelObject}( \mathrm{CokernelProjection}( \alpha ) ) \rightarrow \mathrm{im}(\alpha) )
‣ ImageObject ( alpha ) | ( attribute ) |
Returns: an object
The argument is a morphism \alpha. The output is the image \mathrm{im}( \alpha ).
‣ ImageEmbedding ( alpha ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{im}(\alpha), B)
The argument is a morphism \alpha: A \rightarrow B. The output is the image embedding \iota: \mathrm{im}(\alpha) \hookrightarrow B.
‣ ImageEmbeddingWithGivenImageObject ( alpha, I ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(I, B)
The argument is a morphism \alpha: A \rightarrow B and an object I = \mathrm{im}( \alpha ). The output is the image embedding \iota: I \hookrightarrow B.
‣ CoastrictionToImage ( alpha ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(A, \mathrm{im}( \alpha ))
The argument is a morphism \alpha: A \rightarrow B. The output is the coastriction to image c: A \rightarrow \mathrm{im}( \alpha ).
‣ CoastrictionToImageWithGivenImageObject ( alpha, I ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(A, I)
The argument is a morphism \alpha: A \rightarrow B and an object I = \mathrm{im}( \alpha ). The output is the coastriction to image c: A \rightarrow I.
‣ UniversalMorphismFromImage ( alpha, tau ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{im}(\alpha), T)
The arguments are a morphism \alpha: A \rightarrow B and a pair of morphisms \tau = ( \tau_1: A \rightarrow T, \tau_2: T \hookrightarrow B ) where \tau_2 is a monomorphism such that \tau_2 \circ \tau_1 \sim_{A,B} \alpha. The output is the morphism u(\tau): \mathrm{im}(\alpha) \rightarrow T given by the universal property of the image.
‣ UniversalMorphismFromImageWithGivenImageObject ( alpha, tau, I ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(I, T)
The arguments are a morphism \alpha: A \rightarrow B, a pair of morphisms \tau = ( \tau_1: A \rightarrow T, \tau_2: T \hookrightarrow B ) where \tau_2 is a monomorphism such that \tau_2 \circ \tau_1 \sim_{A,B} \alpha, and an object I = \mathrm{im}( \alpha ). The output is the morphism u(\tau): \mathrm{im}(\alpha) \rightarrow T given by the universal property of the image.
‣ AddImageObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation ImageObject
. F: \alpha \mapsto I.
‣ AddImageEmbedding ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation ImageEmbedding
. F: \alpha \mapsto \iota.
‣ AddImageEmbeddingWithGivenImageObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation ImageEmbeddingWithGivenImageObject
. F: (\alpha,I) \mapsto \iota.
‣ AddCoastrictionToImage ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation CoastrictionToImage
. F: \alpha \mapsto c.
‣ AddCoastrictionToImageWithGivenImageObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation CoastrictionToImageWithGivenImageObject
. F: (\alpha,I) \mapsto c.
‣ AddUniversalMorphismFromImage ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismFromImage
. F: (\alpha, \tau) \mapsto u(\tau).
‣ AddUniversalMorphismFromImageWithGivenImageObject ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismFromImageWithGivenImageObject
. F: (\alpha, \tau, I) \mapsto u(\tau).
For a given morphism \alpha: A \rightarrow B, a coimage of \alpha consists of four parts:
an object C,
an epimorphism \pi: A \twoheadrightarrow C,
a morphism a: C \rightarrow B such that a \circ \pi \sim_{A,B} \alpha,
a dependent function u mapping each pair of morphisms \tau = ( \tau_1: A \twoheadrightarrow T, \tau_2: T \rightarrow B ) where \tau_1 is an epimorphism such that \tau_2 \circ \tau_1 \sim_{A,B} \alpha to a morphism u(\tau): T \rightarrow C such that u( \tau ) \circ \tau_1 \sim_{A,C} \pi and a \circ u( \tau ) \sim_{T,B} \tau_2.
The 4-tuple ( C, \pi, a, u ) is called a coimage of \alpha if the morphisms u( \tau ) are uniquely determined up to congruence of morphisms. We denote the object C of such a 4-tuple by \mathrm{coim}(\alpha). We say that the morphism u( \tau ) is induced by the universal property of the coimage.
‣ MorphismFromCoimageToImage ( alpha ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{coim}(\alpha), \mathrm{im}(\alpha))
The argument is a morphism \alpha: A \rightarrow B. The output is the canonical morphism (in a preabelian category) \mathrm{coim}(\alpha) \rightarrow \mathrm{im}(\alpha).
‣ MorphismFromCoimageToImageWithGivenObjects ( alpha ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(C,I)
The argument is an object C = \mathrm{coim}(\alpha), a morphism \alpha: A \rightarrow B, and an object I = \mathrm{im}(\alpha). The output is the canonical morphism (in a preabelian category) C \rightarrow I.
‣ AddMorphismFromCoimageToImageWithGivenObjects ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation MorphismFromCoimageToImageWithGivenObjects
. F: (C, \alpha, I) \mapsto ( C \rightarrow I ).
‣ InverseMorphismFromCoimageToImage ( alpha ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{im}(\alpha), \mathrm{coim}(\alpha))
The argument is a morphism \alpha: A \rightarrow B. The output is the inverse of the canonical morphism (in an abelian category) \mathrm{im}(\alpha) \rightarrow \mathrm{coim}(\alpha).
‣ InverseMorphismFromCoimageToImageWithGivenObjects ( alpha ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(I,C)
The argument is an object C = \mathrm{coim}(\alpha), a morphism \alpha: A \rightarrow B, and an object I = \mathrm{im}(\alpha). The output is the inverse of the canonical morphism (in an abelian category) I \rightarrow C.
‣ AddInverseMorphismFromCoimageToImageWithGivenObjects ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation MorphismFromCoimageToImageWithGivenObjects
. F: (C, \alpha, I) \mapsto ( I \rightarrow C ).
‣ IsomorphismFromCoimageToCokernelOfKernel ( alpha ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}( \mathrm{coim}( \alpha ), \mathrm{CokernelObject}( \mathrm{KernelEmbedding}( \alpha ) ) ).
The argument is a morphism \alpha: A \rightarrow B. The output is the canonical morphism \mathrm{coim}( \alpha ) \rightarrow \mathrm{CokernelObject}( \mathrm{KernelEmbedding}( \alpha ) ).
‣ AddIsomorphismFromCoimageToCokernelOfKernel ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation IsomorphismFromCoimageToCokernelOfKernel
. F: \alpha \mapsto ( \mathrm{coim}( \alpha ) \rightarrow \mathrm{CokernelObject}( \mathrm{KernelEmbedding}( \alpha ) ) ).
‣ IsomorphismFromCokernelOfKernelToCoimage ( alpha ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}( \mathrm{CokernelObject}( \mathrm{KernelEmbedding}( \alpha ) ), \mathrm{coim}( \alpha ) ).
The argument is a morphism \alpha: A \rightarrow B. The output is the canonical morphism \mathrm{CokernelObject}( \mathrm{KernelEmbedding}( \alpha ) ) \rightarrow \mathrm{coim}( \alpha ).
‣ AddIsomorphismFromCokernelOfKernelToCoimage ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation IsomorphismFromCokernelOfKernelToCoimage
. F: \alpha \mapsto ( \mathrm{CokernelObject}( \mathrm{KernelEmbedding}( \alpha ) ) \rightarrow \mathrm{coim}( \alpha ) ).
‣ Coimage ( alpha ) | ( attribute ) |
Returns: an object
The argument is a morphism \alpha. The output is the coimage \mathrm{coim}( \alpha ).
‣ CoimageProjection ( C ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(A, C)
This is a convenience method. The argument is an object C which was created as a coimage of a morphism \alpha: A \rightarrow B. The output is the coimage projection \pi: A \twoheadrightarrow C.
‣ CoimageProjection ( alpha ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(A, \mathrm{coim}( \alpha ))
The argument is a morphism \alpha: A \rightarrow B. The output is the coimage projection \pi: A \twoheadrightarrow \mathrm{coim}( \alpha ).
‣ CoimageProjectionWithGivenCoimage ( alpha, C ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(A, C)
The arguments are a morphism \alpha: A \rightarrow B and an object C = \mathrm{coim}(\alpha). The output is the coimage projection \pi: A \twoheadrightarrow C.
‣ AstrictionToCoimage ( C ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(C,B)
This is a convenience method. The argument is an object C which was created as a coimage of a morphism \alpha: A \rightarrow B. The output is the astriction to coimage a: C \rightarrow B.
‣ AstrictionToCoimage ( alpha ) | ( attribute ) |
Returns: a morphism in \mathrm{Hom}(\mathrm{coim}( \alpha ),B)
The argument is a morphism \alpha: A \rightarrow B. The output is the astriction to coimage a: \mathrm{coim}( \alpha ) \rightarrow B.
‣ AstrictionToCoimageWithGivenCoimage ( alpha, C ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(C,B)
The argument are a morphism \alpha: A \rightarrow B and an object C = \mathrm{coim}( \alpha ). The output is the astriction to coimage a: C \rightarrow B.
‣ UniversalMorphismIntoCoimage ( alpha, tau ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(T, \mathrm{coim}( \alpha ))
The arguments are a morphism \alpha: A \rightarrow B and a pair of morphisms \tau = ( \tau_1: A \twoheadrightarrow T, \tau_2: T \rightarrow B ) where \tau_1 is an epimorphism such that \tau_2 \circ \tau_1 \sim_{A,B} \alpha. The output is the morphism u(\tau): T \rightarrow \mathrm{coim}( \alpha ) given by the universal property of the coimage.
‣ UniversalMorphismIntoCoimageWithGivenCoimage ( alpha, tau, C ) | ( operation ) |
Returns: a morphism in \mathrm{Hom}(T, C)
The arguments are a morphism \alpha: A \rightarrow B, a pair of morphisms \tau = ( \tau_1: A \twoheadrightarrow T, \tau_2: T \rightarrow B ) where \tau_1 is an epimorphism such that \tau_2 \circ \tau_1 \sim_{A,B} \alpha, and an object C = \mathrm{coim}( \alpha ). The output is the morphism u(\tau): T \rightarrow C given by the universal property of the coimage.
‣ AddCoimage ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation Coimage
. F: \alpha \mapsto C
‣ AddCoimageProjection ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation CoimageProjection
. F: \alpha \mapsto \pi
‣ AddCoimageProjectionWithGivenCoimage ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation CoimageProjectionWithGivenCoimage
. F: (\alpha,C) \mapsto \pi
‣ AddAstrictionToCoimage ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation AstrictionToCoimage
. F: \alpha \mapsto a
‣ AddAstrictionToCoimageWithGivenCoimage ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation AstrictionToCoimageWithGivenCoimage
. F: (\alpha,C) \mapsto a
‣ AddUniversalMorphismIntoCoimage ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismIntoCoimage
. F: (\alpha, \tau) \mapsto u(\tau)
‣ AddUniversalMorphismIntoCoimageWithGivenCoimage ( C, F ) | ( operation ) |
Returns: nothing
The arguments are a category C and a function F. This operations adds the given function F to the category for the basic operation UniversalMorphismIntoCoimageWithGivenCoimage
. F: (\alpha, \tau,C) \mapsto u(\tau)
generated by GAPDoc2HTML