An element of a module M is internally represented by a module map from the (distinguished) rank 1 free module to the module M. In particular, the data structure for module elements automatically profits from the intrinsic realization of morphisms in the homalg project.
‣ IsHomalgElement ( M ) | ( category ) |
Returns: true
or false
The GAP category of module elements.
‣ IsElementOfAModuleGivenByAMorphismRep ( M ) | ( representation ) |
Returns: true
or false
The GAP representation of elements of modules.
(It is a subrepresentation of IsElementOfAnObjectGivenByAMorphismRep
(homalg: IsElementOfAnObjectGivenByAMorphismRep).)
‣ IsElementOfIntegers ( m ) | ( property ) |
Returns: true
or false
Check if the m is an element of the integers viewed as a module over itself.
gap> ZZ := HomalgRingOfIntegers( ); Z gap> a := HomalgElement( HomalgMap( "[[2]]", 1 * ZZ, 1 * ZZ ) ); 2 gap> IsElementOfIntegers( a ); true gap> Z4 := ZZ / 4; Z/( 4 ) gap> b := HomalgElement( HomalgMap( "[[-1]]", 1 * Z4, 1 * Z4 ) ); |[ 3 ]| gap> IsElementOfIntegers( b ); false
‣ HomalgRing ( m ) | ( operation ) |
Returns: a homalg ring
The homalg ring of the homalg module element m.
gap> ZZ := HomalgRingOfIntegers( ); Z gap> a := HomalgElement( HomalgMap( "[[2]]", 1 * ZZ, 1 * ZZ ) ); 2 gap> IsIdenticalObj( ZZ, HomalgRing( a ) ); true
generated by GAPDoc2HTML