*
, for multiple of ideal of numerical semigroup 7.1-12 +
, for defining ideal of numerical semigroup 7.1-1 -
, for ideals of numerical semigroup 7.1-13 \/
, quotient of numerical semigroup 5.2-2 \in
, membership for good ideal 12.4-5 AddSpecialGapOfNumericalSemigroup
5.1-2 AdjacentCatenaryDegreeOfSetOfFactorizations
9.3-2 AdjustmentOfNumericalSemigroup
9.2-16 AffineSemigroup
, by equations 11.1-2 AffineSemigroupByEquations
11.1-2 AffineSemigroupByGenerators
11.1-1 AffineSemigroupByInequalities
11.1-3 AlmostSymmetricNumericalSemigroupsFromIrreducible
6.3-1 AlmostSymmetricNumericalSemigroupsWithFrobeniusNumber
6.3-3 AmalgamationOfNumericalSemigroups
12.1-3 AmbientGoodSemigroupOfGoodIdeal
12.4-3 AmbientNumericalSemigroupOfIdeal
7.1-5 AnIrreducibleNumericalSemigroupWithFrobeniusNumber
6.1-4 ANumericalSemigroupWithPseudoFrobeniusNumbers
5.6-4 AperyList
, for numerical semigroup with respect to element 3.1-7 AperyListOfIdealOfNumericalSemigroupWRTElement
7.2-11 AperyListOfNumericalSemigroup
3.1-8 AperyListOfNumericalSemigroupAsGraph
3.1-10 AperyListOfNumericalSemigroupWRTElement
3.1-7 AperyListOfNumericalSemigroupWRTInteger
3.1-9 AperyTableOfNumericalSemigroup
7.2-12 ApplyPatternToIdeal
7.3-5 ApplyPatternToNumericalSemigroup
7.3-6 ArfCharactersOfArfNumericalSemigroup
8.2-3 ArfClosure
, of good semigroup 12.3-2 ArfGoodSemigroupClosure
12.3-2 ArfNumericalSemigroupClosure
8.2-2 ArfNumericalSemigroupsWithFrobeniusNumber
8.2-4 ArfNumericalSemigroupsWithFrobeniusNumberUpTo
8.2-5 ArfNumericalSemigroupsWithGenus
8.2-6 ArfNumericalSemigroupsWithGenusAndFrobeniusNumber
8.2-8 ArfNumericalSemigroupsWithGenusUpTo
8.2-7 AsAffineSemigroup
11.1-6 AsGluingOfNumericalSemigroups
6.2-1 AsIdealOfNumericalSemigroup
7.3-3 AsymptoticRatliffRushNumberOfIdealOfNumericalSemigroup
7.2-8 BasisOfGroupGivenByEquations
11.1-13 BelongsToAffineSemigroup
11.1-8 BelongsToGoodIdeal
12.4-5 BelongsToGoodSemigroup
12.2-1 BelongsToHomogenizationOfNumericalSemigroup
9.5-1 BelongsToIdealOfNumericalSemigroup
7.1-10 BelongsToNumericalSemigroup
2.2-7 BettiElements
, of affine semigroup 11.3-5 BettiElementsOfAffineSemigroup
11.3-5 BettiElementsOfNumericalSemigroup
4.1-3 BezoutSequence
A.1-1 BlowUpIdealOfNumericalSemigroup
7.2-2 BlowUpOfNumericalSemigroup
7.2-4 BoundForConductorOfImageOfPattern
7.3-4 BuchsbaumNumberOfAssociatedGradedRingNumericalSemigroup
7.4-4 CanonicalBasisOfKernelCongruence
11.3-2 CanonicalIdealOfGoodSemigroup
12.4-7 CanonicalIdealOfNumericalSemigroup
7.1-18 CartesianProductOfNumericalSemigroups
12.1-4 CatenaryDegreeOfAffineSemigroup
11.4-4 CatenaryDegreeOfElementInNumericalSemigroup
9.3-5 CatenaryDegreeOfNumericalSemigroup
9.3-7 CatenaryDegreeOfSetOfFactorizations
9.3-1 CeilingOfRational
A.1-3 CocycleOfNumericalSemigroupWRTElement
3.1-13 CompleteIntersectionNumericalSemigroupsWithFrobeniusNumber
6.2-3 Conductor
, for good semigroup 12.2-2 ConductorOfGoodSemigroup
12.2-2 ConductorOfIdealOfNumericalSemigroup
7.1-8 ConductorOfNumericalSemigroup
3.1-15 CurveAssociatedToDeltaSequence
10.2-4 DecomposeIntoIrreducibles
, for numerical semigroup 6.1-6 DeltaSequencesWithFrobeniusNumber
10.2-3 DeltaSetListUpToElementWRTNumericalSemigroup
9.2-9 DeltaSetOfAffineSemigroup
11.4-3 DeltaSetOfFactorizationsElementWRTNumericalSemigroup
9.2-6 DeltaSetOfNumericalSemigroup
9.2-11 DeltaSetOfSetOfIntegers
9.2-5 DeltaSetPeriodicityBoundForNumericalSemigroup
9.2-7 DeltaSetPeriodicityStartForNumericalSemigroup
9.2-8 DeltaSetUnionUpToElementWRTNumericalSemigroup
9.2-10 DenumerantOfElementInNumericalSemigroup
9.1-6 DesertsOfNumericalSemigroup
3.1-19 Difference
, for ideals of numerical semigroups 7.1-14 DifferenceOfIdealsOfNumericalSemigroup
7.1-14 DifferenceOfNumericalSemigroups
5.2-4 DivisorsOfElementInNumericalSemigroup
9.6-2 ElasticityOfAffineSemigroup
11.4-2 ElasticityOfFactorizationsElementWRTNumericalSemigroup
9.2-3 ElasticityOfNumericalSemigroup
9.2-4 EliahouNumber
, for numerical semigroup 3.2-2 EliahouSlicesOfNumericalSemigroup
3.2-4 EmbeddingDimension
, for numerical semigroup 3.1-3 EmbeddingDimensionOfNumericalSemigroup
3.1-3 EqualCatenaryDegreeOfAffineSemigroup
11.4-5 EqualCatenaryDegreeOfNumericalSemigroup
9.3-9 EqualCatenaryDegreeOfSetOfFactorizations
9.3-3 EqualPrimitiveElementsOfNumericalSemigroup
9.3-8 EquationsOfGroupGeneratedBy
11.1-12 FactorizationsElementListWRTNumericalSemigroup
9.1-3 FactorizationsElementWRTNumericalSemigroup
9.1-2 FactorizationsInHomogenizationOfNumericalSemigroup
9.5-2 FactorizationsIntegerWRTList
9.1-1 FactorizationsVectorWRTList
11.4-1 FengRaoDistance
9.7-1 FengRaoNumber
9.7-2 FirstElementsOfNumericalSemigroup
3.1-5 ForcedIntegersForPseudoFrobenius
5.6-1 FreeNumericalSemigroupsWithFrobeniusNumber
6.2-5 FrobeniusNumber
, for numerical semigroup 3.1-14 FrobeniusNumberOfNumericalSemigroup
3.1-14 FundamentalGaps
, for numerical semigroup 3.1-25 FundamentalGapsOfNumericalSemigroup
3.1-25 Gaps
, for numerical semigroup 3.1-18 GapsOfNumericalSemigroup
3.1-18 Generators
, for affine semigroup 11.1-4 GeneratorsKahlerDifferentials
10.2-9 GeneratorsModule_Global
10.2-8 GeneratorsOfAffineSemigroup
11.1-4 GeneratorsOfIdealOfNumericalSemigroup
7.1-4 GeneratorsOfKernelCongruence
11.3-1 GeneratorsOfNumericalSemigroup
3.1-2 Genus
, for numerical semigroup 3.1-24 GenusOfNumericalSemigroup
3.1-24 GluingOfAffineSemigroups
11.2-1 GoodGeneratingSystemOfGoodIdeal
12.4-2 GoodIdeal
12.4-1 GoodSemigroup
12.1-5 GoodSemigroupByMaximalElements
12.2-8 GoodSemigroupBySmallElements
12.2-5 GraeffePolynomial
10.1-5 GraphAssociatedToElementInNumericalSemigroup
4.1-2 GraverBasis
11.3-3 HilbertBasisOfSystemOfHomogeneousEquations
11.1-10 HilbertBasisOfSystemOfHomogeneousInequalities
11.1-11 HilbertFunctionOfIdealOfNumericalSemigroup
7.2-1 HilbertSeriesOfNumericalSemigroup
10.1-4 Holes
, for numerical semigroup 3.1-22 HolesOfNumericalSemigroup
3.1-22 HomogeneousBettiElementsOfNumericalSemigroup
9.5-3 HomogeneousCatenaryDegreeOfAffineSemigroup
11.4-6 HomogeneousCatenaryDegreeOfNumericalSemigroup
9.5-4 IdealOfNumericalSemigroup
7.1-1 InductiveNumericalSemigroup
5.2-6 Intersection
, for ideals of numerical semigroups 7.1-16 IntersectionIdealsOfNumericalSemigroup
7.1-16 IntersectionOfNumericalSemigroups
5.2-1 IrreducibleMaximalElementsOfGoodSemigroup
12.2-7 IrreducibleNumericalSemigroupsWithFrobeniusNumber
6.1-5 IsACompleteIntersectionNumericalSemigroup
6.2-2 IsAcute
, for numerical semigroups 3.1-21 IsAcuteNumericalSemigroup
3.1-21 IsAdditiveNumericalSemigroup
9.2-17 IsAdmissiblePattern
7.3-1 IsAdmittedPatternByIdeal
7.3-7 IsAdmittedPatternByNumericalSemigroup
7.3-8 IsAffineSemigroup
11.1-7 IsAffineSemigroupByEquations
11.1-7 IsAffineSemigroupByGenerators
11.1-7 IsAffineSemigroupByInequalities
11.1-7 IsAlmostSymmetric
6.3-2 IsAlmostSymmetricNumericalSemigroup
6.3-2 IsAperyListOfNumericalSemigroup
2.2-4 IsAperySetAlphaRectangular
6.2-12 IsAperySetBetaRectangular
6.2-11 IsAperySetGammaRectangular
6.2-10 IsArf
8.2-1 IsArfNumericalSemigroup
8.2-1 IsBezoutSequence
A.1-2 IsCanonicalIdeal
7.1-19 IsCanonicalIdealOfNumericalSemigroup
7.1-19 IsCompleteIntersection
6.2-2 IsCyclotomicNumericalSemigroup
10.1-8 IsCyclotomicPolynomial
10.1-6 IsDeltaSequence
10.2-2 IsFree
6.2-4 IsFreeNumericalSemigroup
6.2-4 IsFull
11.1-9 IsFullAffineSemigroup
11.1-9 IsGeneric
, for affine semigroups 11.3-7 IsGenericAffineSemigroup
11.3-7 IsGenericNumericalSemigroup
4.2-2 IsGoodSemigroup
12.1-1 IsGradedAssociatedRingNumericalSemigroupBuchsbaum
7.4-2 IsGradedAssociatedRingNumericalSemigroupCI
7.4-8 IsGradedAssociatedRingNumericalSemigroupCM
7.4-1 IsGradedAssociatedRingNumericalSemigroupGorenstein
7.4-7 IsIdealOfNumericalSemigroup
7.1-2 IsIntegral
7.1-6 IsIntegralIdealOfNumericalSemigroup
7.1-6 IsIrreducible
, for numerical semigroups 6.1-1 IsIrreducibleNumericalSemigroup
6.1-1 IsKroneckerPolynomial
10.1-7 IsListOfIntegersNS
A.2-2 IsMED
8.1-1 IsMEDNumericalSemigroup
8.1-1 IsModularNumericalSemigroup
2.2-1 IsMonomialNumericalSemigroup
10.2-10 IsMpure
7.4-5 IsMpureNumericalSemigroup
7.4-5 IsNumericalSemigroup
2.2-1 IsNumericalSemigroupAssociatedIrreduciblePlanarCurveSingularity
6.2-8 IsNumericalSemigroupByAperyList
2.2-1 IsNumericalSemigroupByFundamentalGaps
2.2-1 IsNumericalSemigroupByGaps
2.2-1 IsNumericalSemigroupByGenerators
2.2-1 IsNumericalSemigroupByInterval
2.2-1 IsNumericalSemigroupByMinimalGenerators
2.2-1 IsNumericalSemigroupByOpenInterval
2.2-1 IsNumericalSemigroupBySmallElements
2.2-1 IsNumericalSemigroupBySubAdditiveFunction
2.2-1 IsNumericalSemigroupPolynomial
10.1-2 IsOrdinary
, for numerical semigroups 3.1-20 IsOrdinaryNumericalSemigroup
3.1-20 IsProportionallyModularNumericalSemigroup
2.2-1 IsPseudoSymmetric
, for numerical semigroups 6.1-3 IsPseudoSymmetricNumericalSemigroup
6.1-3 IsPure
7.4-6 IsPureNumericalSemigroup
7.4-6 IsSaturated
8.3-1 IsSaturatedNumericalSemigroup
8.3-1 IsSelfReciprocalUnivariatePolynomial
10.1-9 IsStronglyAdmissiblePattern
7.3-2 IsSubsemigroupOfNumericalSemigroup
2.2-5 IsSubset
2.2-6 IsSuperSymmetricNumericalSemigroup
9.2-18 IsSymmetric
, for good semigroups 12.3-1 IsSymmetricGoodSemigroup
12.3-1 IsSymmetricNumericalSemigroup
6.1-2 IsTelescopic
6.2-6 IsTelescopicNumericalSemigroup
6.2-6 IsUniquelyPresented
4.2-1 IsUniquelyPresentedAffineSemigroup
11.3-8 IsUniquelyPresentedNumericalSemigroup
4.2-1 KunzCoordinatesOfNumericalSemigroup
3.1-11 KunzPolytope
3.1-12 LatticePathAssociatedToNumericalSemigroup
3.1-23 LengthsOfFactorizationsElementWRTNumericalSemigroup
9.2-2 LengthsOfFactorizationsIntegerWRTList
9.2-1 LipmanSemigroup
7.2-5 LShapesOfNumericalSemigroup
9.1-5 MaximalDenumerantOfElementInNumericalSemigroup
9.2-13 MaximalDenumerantOfNumericalSemigroup
9.2-15 MaximalDenumerantOfSetOfFactorizations
9.2-14 MaximalElementsOfGoodSemigroup
12.2-6 MaximalIdealOfNumericalSemigroup
7.1-17 MaximumDegreeOfElementWRTNumericalSemigroup
9.2-12 MEDClosure
, for numerical semigroups 8.1-2 MEDNumericalSemigroupClosure
8.1-2 MicroInvariantsOfNumericalSemigroup
7.2-10 MinimalArfGeneratingSystemOfArfNumericalSemigroup
8.2-3 MinimalGeneratingSystem
, for affine semigroup 11.1-5 MinimalGeneratingSystemOfIdealOfNumericalSemigroup
7.1-3 MinimalGeneratingSystemOfNumericalSemigroup
3.1-2 MinimalGenerators
12.2-10 MinimalGoodGeneratingSystemOfGoodIdeal
12.4-4 MinimalGoodGeneratingSystemOfGoodSemigroup
12.2-9 MinimalMEDGeneratingSystemOfMEDNumericalSemigroup
8.1-3 MinimalPresentation
, for affine semigroup 11.3-4 MinimalPresentationOfAffineSemigroup
11.3-4 MinimalPresentationOfNumericalSemigroup
4.1-1 Minimum
, minimum of ideal of numerical semigroup 7.1-9 ModularNumericalSemigroup
2.1-8 MoebiusFunctionAssociatedToNumericalSemigroup
9.6-1 MonotoneCatenaryDegreeOfAffineSemigroup
11.4-7 MonotoneCatenaryDegreeOfNumericalSemigroup
9.3-11 MonotoneCatenaryDegreeOfSetOfFactorizations
9.3-4 MonotonePrimitiveElementsOfNumericalSemigroup
9.3-10 MultipleOfIdealOfNumericalSemigroup
7.1-12 MultipleOfNumericalSemigroup
5.2-3 Multiplicity
, for numerical semigroup 3.1-1 MultiplicityOfNumericalSemigroup
3.1-1 MultiplicitySequenceOfNumericalSemigroup
7.2-9 NumericalDuplication
5.2-5 NumericalSemigroup
, by (closed) interval 2.1-10 NumericalSemigroupByAffineMap
2.1-7 NumericalSemigroupByAperyList
2.1-3 NumericalSemigroupByFundamentalGaps
2.1-6 NumericalSemigroupByGaps
2.1-5 NumericalSemigroupByGenerators
2.1-1 NumericalSemigroupByInterval
2.1-10 NumericalSemigroupByOpenInterval
2.1-11 NumericalSemigroupBySmallElements
2.1-4 NumericalSemigroupBySubAdditiveFunction
2.1-2 NumericalSemigroupDuplication
12.1-2 NumericalSemigroupFromNumericalSemigroupPolynomial
10.1-3 NumericalSemigroupPolynomial
10.1-1 NumericalSemigroupsPlanarSingularityWithFrobeniusNumber
6.2-9 NumericalSemigroupsWithFrobeniusNumber
5.4-1 NumericalSemigroupsWithGenus
5.5-1 NumericalSemigroupsWithPseudoFrobeniusNumbers
5.6-3 NumericalSemigroupWithRandomElementsAndFrobenius
B.1-6 NumSgpsUse4ti2
13.1-1 NumSgpsUse4ti2gap
13.1-2 NumSgpsUseNormalize
13.1-3 NumSgpsUseSingular
13.1-4 NumSgpsUseSingularGradedModules
13.1-6 NumSgpsUseSingularInterface
13.1-5 OmegaPrimalityOfAffineSemigroup
11.4-10 OmegaPrimalityOfElementInAffineSemigroup
11.4-9 OmegaPrimalityOfElementInNumericalSemigroup
9.4-1 OmegaPrimalityOfElementListInNumericalSemigroup
9.4-2 OmegaPrimalityOfNumericalSemigroup
9.4-3 OverSemigroupsNumericalSemigroup
5.3-1 PrimitiveElementsOfAffineSemigroup
11.3-9 PrimitiveElementsOfNumericalSemigroup
4.1-4 ProfileOfNumericalSemigroup
3.2-3 ProportionallyModularNumericalSemigroup
2.1-9 PseudoFrobeniusOfNumericalSemigroup
3.1-16 QuotientOfNumericalSemigroup
5.2-2 RandomListForNS
B.1-2 RandomListRepresentingSubAdditiveFunction
B.1-5 RandomModularNumericalSemigroup
B.1-3 RandomNumericalSemigroup
B.1-1 RandomProportionallyModularNumericalSemigroup
B.1-4 RatliffRushClosureOfIdealOfNumericalSemigroup
7.2-7 RatliffRushNumberOfIdealOfNumericalSemigroup
7.2-6 RClassesOfSetOfFactorizations
9.1-4 ReductionNumber
, for ideals of numerical semigroups 7.2-3 ReductionNumberIdealNumericalSemigroup
7.2-3 RemoveMinimalGeneratorFromNumericalSemigroup
5.1-1 RepresentsGapsOfNumericalSemigroup
2.2-3 RepresentsPeriodicSubAdditiveFunction
A.2-1 RepresentsSmallElementsOfGoodSemigroup
12.2-4 RepresentsSmallElementsOfNumericalSemigroup
2.2-2 RthElementOfNumericalSemigroup
3.1-6 SaturatedClosure
, for numerical semigroups 8.3-2 SaturatedNumericalSemigroupClosure
8.3-2 SaturatedNumericalSemigroupsWithFrobeniusNumber
8.3-3 SemigroupOfValuesOfCurve_Global
10.2-7 SemigroupOfValuesOfCurve_Local
10.2-6 SemigroupOfValuesOfPlaneCurve
10.2-5 SemigroupOfValuesOfPlaneCurveWithSinglePlaceAtInfinity
10.2-1 ShadedSetOfElementInAffineSemigroup
11.3-6 ShadedSetOfElementInNumericalSemigroup
4.1-5 SimpleForcedIntegersForPseudoFrobenius
5.6-2 SmallElements
, for good ideal 12.4-6 SmallElementsOfGoodIdeal
12.4-6 SmallElementsOfGoodSemigroup
12.2-3 SmallElementsOfIdealOfNumericalSemigroup
7.1-7 SmallElementsOfNumericalSemigroup
3.1-4 SpecialGaps
, for numerical semigroup 3.1-26 SpecialGapsOfNumericalSemigroup
3.1-26 StarClosureOfIdealOfNumericalSemigroup
7.2-13 SubtractIdealsOfNumericalSemigroup
7.1-13 SumIdealsOfNumericalSemigroup
7.1-11 TameDegreeOfAffineSemigroup
11.4-8 TameDegreeOfElementInNumericalSemigroup
9.3-13 TameDegreeOfNumericalSemigroup
9.3-12 TameDegreeOfSetOfFactorizations
9.3-6 TelescopicNumericalSemigroupsWithFrobeniusNumber
6.2-7 TorsionOfAssociatedGradedRingNumericalSemigroup
7.4-3 TranslationOfIdealOfNumericalSemigroup
7.1-15 TruncatedWilfNumberOfNumericalSemigroup
3.2-2 TypeOfNumericalSemigroup
3.1-17 TypeSequenceOfNumericalSemigroup
7.1-20 WilfNumber
, for numerical semigroup 3.2-1 WilfNumberOfNumericalSemigroup
3.2-1
generated by GAPDoc2HTML