It is not only important to see how a TPN can be interpreted as a finite state automaton. But also if an arbitrary automaton could represent the language of rank encoded permutations of a TPN. Currently within PatternClass
it is only possible to check whether deterministic automata are possible representatives of a TPN.
‣ IsStarClosed ( aut ) | ( function ) |
Returns: true
if the start and accept states in aut
are one and the same state.
This has the consequence that the whole rational expression accepted by aut
is always enclosed by the Kleene star.
gap> x:=Automaton("det",4,2,[[3,4,2,4],[2,2,2,4]],[1],[2]); < deterministic automaton on 2 letters with 4 states > gap> IsStarClosed(x); false gap> AutToRatExp(x); (a(aUb)Ub)b* gap> y:=Automaton("det",3,2,[[3,2,1],[2,3,1]],[1],[1]); < deterministic automaton on 2 letters with 3 states > gap> IsStarClosed(y); true gap> AutToRatExp(y); ((ba*bUa)(aUb))* gap>
‣ Is2StarReplaceable ( aut ) | ( function ) |
Returns: true
if none of the states in the automaton aut
, which are not the initial state, have a transition to the initial state labelled with the first letter of the alphabet. It also returns true
if there is at least one state \(i \in Q\) with the first two transitions from \(i\) being \(f(i,1)=1\) and \(f(i,2)=x\), where \(x \in Q\setminus\{1\}\) and \(f(x,1)=1\).
gap> x:=Automaton("det",3,2,[[1,2,3],[2,2,3]],[1],[2]); < deterministic automaton on 2 letters with 3 states > gap> Is2StarReplaceable(x); true gap> y:=Automaton("det",4,2,[[4,1,1,2],[1,3,3,2]],[1],[1]); < deterministic automaton on 2 letters with 4 states > gap> Is2StarReplaceable(y); true gap> z:=Automaton("det",4,2,[[4,1,1,2],[1,4,2,2]],[1],[4]); < deterministic automaton on 2 letters with 4 states > gap> Is2StarReplaceable(z); false gap>
‣ IsStratified ( aut ) | ( function ) |
Returns: true
if aut
has a specific "layered" form.
A formal description of the most basic stratified automaton is:
\((S,Q,f,q_{0},A)\) with \(S:=\{1,...,n\},\,\, Q:=\{1,...,m\},\,\, n<m,\,\, q_{0}:=1,\,\, A:=Q\setminus \{n+1\},\,\, f: Q \times S \rightarrow Q \) and \(n+1\) is a sink state.
If \(i,j \in Q \setminus \{ n+1 \}\),with \(i < j\), and \(i',j' \in S\), \(i=i',\,\, j=j'\) then
\[f(i,i')=i,\,\, f(i,j')=j,\,\, f(j,j')=j,\,\, f(j,i')=j-1 \,\, or \,\, n+1.\]
gap> x:=Automaton("det",4,2,[[1,3,1,4],[2,2,4,4]],[1],[2]); < deterministic automaton on 2 letters with 4 states > gap> IsStratified(x); true gap> y:=Automaton("det",4,2,[[1,3,2,4],[2,4,1,4]],[1],[2]); < deterministic automaton on 2 letters with 4 states > gap> IsStratified(y); false gap>
‣ IsPossibleGraphAut ( aut ) | ( function ) |
Returns: true
if aut
returns true
in IsStratified
, Is2StarReplaceable
and IsStarClosed
.
An automaton that fulfils the three functions above has the right form to be an automaton representing rank encoded permutations, which are output from a TPN.
gap> x:=Automaton("det",2,2,[[1,2],[2,2]],[1],[1]); < deterministic automaton on 2 letters with 2 states > gap> IsPossibleGraphAut(x); true gap> y:=Automaton("det",2,2,[[1,2],[1,2]],[1],[1]); < deterministic automaton on 2 letters with 2 states > gap> IsPossibleGraphAut(y); false gap> IsStarClosed(y); true gap> Is2StarReplaceable(y); true gap> IsStratified(y); false gap>
generated by GAPDoc2HTML