Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[Alp97] Alp, M., GAP, crossed modules, cat1-groups: applications of computational group theory, Ph.{D}.~thesis, University of Wales, Bangor (1997).

[AW00] Alp, M. and Wensley, C. D., Enumeration of cat1-groups of low order, Int. J. Algebra and Computation, 10 (2000), 407--424.

[AW10] Alp, M. and Wensley, C. D., Automorphisms and homotopies of groupoids and crossed modules, Applied Categorical Structures, 18 (2010), 473-495.

[BH78] Brown, R. and Higgins, P. J., On the connection between the second relative homotopy group and some related spaces, Proc. London Math. Soc., 36 (1978), 193--212.

[BHS11] Brown, R., Higgins, P. J. and Sivera, R., Nonabelian algrebraic topology, European Mathematical Society, Tracts in Mathematics, 15 (2011).

[BL87] Brown, R. and Loday, J. -.L., Van Kampen theorems for diagram of spaces, Topology, 26 (1987), 311--335.

[Bro82] Brown, R. (Brown, R. and Thickstun, T. L., Eds.), Higher-dimensional group theory, in Low-dimensional topology, Cambridge University Press, London Math. Soc. Lecture Note Series, 48 (1982), 215--238.

[BW95] Brown, R. and Wensley, C. D., On finite induced crossed modules, and the homotopy \(2\)-type of mapping cones, Theory and Applications of Categories, 1 (1995), 54--71.

[BW96] Brown, R. and Wensley, C. D., Computing crossed modules induced by an inclusion of a normal subgroup, with applications to homotopy \(2\)-types, Theory and Applications of Categories, 2 (1996), 3--16.

[BW03] Brown, R. and Wensley, C. D., Computation and homotopical applications of induced crossed modules, J. Symbolic Computation, 35 (2003), 59--72.

[Ell84] Ellis, G., Crossed modules and their higher dimensional analogues, Ph.{D}.~thesis, University of Wales, Bangor (1984).

[ES87] Ellis, G. and Steiner, R., Higher dimensional crossed modules and the homotopy groups of (n+1)-ads., J. Pure and Appl. Algebra, 46 (1987), 117--136.

[Gil90] Gilbert, N. D., Derivations, automorphisms and crossed modules, Comm. in Algebra, 18 (1990), 2703--2734.

[Hor17] Horn, M., GitHubPagesForGAP - a GitHub Pages generator for GAP packages , 0.2 (2017)
( GAP package, https://gap-system.github.io/GitHubPagesForGAP/ ).

[IOU16] Ilgaz, E., Odabas, A. and Uslu, E. O., Isoclinism of crossed modules, J. Symb. Comput., (2016), 1--17
(http://dx.doi.org/10.1016/j.jsc.2015.08.006).

[JNO90] James, R., Newman, M. F. and O'Brien, E. A., The groups of order 128, J. Algebra, 129 (1990), 136--158.

[LN17] Lübeck, F. and Neunhöffer, M., GAPDoc (version 1.6), RWTH Aachen (2017)
( GAP package, http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html ).

[Lod82] Loday, J. L., Spaces with finitely many non-trivial homotopy groups, J. App. Algebra, 24 (1982), 179--202.

[Moo01] Moore, E. J., Graphs of Groups: Word Computations and Free Crossed Resolutions, Ph.{D}.~thesis, University of Wales, Bangor (2001).

[Nor87] Norrie, K. J., Crossed modules and analogues of group theorems, Ph.{D}.~thesis, King's College, University of London (1987).

[Nor90] Norrie, K. J., Actions and automorphisms of crossed modules, Bull. Soc. Math. France, 118 (1990), 129--146.

[Whi48] Whitehead, J. H. C., On operators in relative homotopy groups, Ann. of Math., 49 (1948), 610--640.

[Whi49] Whitehead, J. H. C., Combinatorial homotopy II, Bull. Amer. Math. Soc., 55 (1949), 453--496.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 Bib Ind

generated by GAPDoc2HTML