[Alp97] Alp, M., GAP, crossed modules, cat1-groups: applications of computational group theory, Ph.{D}.~thesis, University of Wales, Bangor (1997).
[AW00] Alp, M. and Wensley, C. D., Enumeration of cat1-groups of low order, Int. J. Algebra and Computation, 10 (2000), 407--424.
[AW10] Alp, M. and Wensley, C. D., Automorphisms and homotopies of groupoids and crossed modules, Applied Categorical Structures, 18 (2010), 473-495.
[BH78] Brown, R. and Higgins, P. J., On the connection between the second relative homotopy group and some related spaces, Proc. London Math. Soc., 36 (1978), 193--212.
[BHS11] Brown, R., Higgins, P. J. and Sivera, R., Nonabelian algrebraic topology, European Mathematical Society, Tracts in Mathematics, 15 (2011).
[BL87] Brown, R. and Loday, J. -.L., Van Kampen theorems for diagram of spaces, Topology, 26 (1987), 311--335.
[Bro82] Brown, R. (Brown, R. and Thickstun, T. L., Eds.), Higher-dimensional group theory, in Low-dimensional topology, Cambridge University Press, London Math. Soc. Lecture Note Series, 48 (1982), 215--238.
[BW95] Brown, R. and Wensley, C. D., On finite induced crossed modules, and the homotopy \(2\)-type of mapping cones, Theory and Applications of Categories, 1 (1995), 54--71.
[BW96] Brown, R. and Wensley, C. D., Computing crossed modules induced by an inclusion of a normal subgroup, with applications to homotopy \(2\)-types, Theory and Applications of Categories, 2 (1996), 3--16.
[BW03] Brown, R. and Wensley, C. D., Computation and homotopical applications of induced crossed modules, J. Symbolic Computation, 35 (2003), 59--72.
[Ell84] Ellis, G., Crossed modules and their higher dimensional analogues, Ph.{D}.~thesis, University of Wales, Bangor (1984).
[ES87] Ellis, G. and Steiner, R., Higher dimensional crossed modules and the homotopy groups of (n+1)-ads., J. Pure and Appl. Algebra, 46 (1987), 117--136.
[Gil90] Gilbert, N. D., Derivations, automorphisms and crossed modules, Comm. in Algebra, 18 (1990), 2703--2734.
[Hor17] Horn, M.,
GitHubPagesForGAP - a GitHub Pages generator for GAP packages
,
0.2
(2017)
(
GAP package, https://gap-system.github.io/GitHubPagesForGAP/
).
[IOU16] Ilgaz, E., Odabas, A. and Uslu, E. O.,
Isoclinism of crossed modules,
J. Symb. Comput.,
(2016),
1--17
(http://dx.doi.org/10.1016/j.jsc.2015.08.006).
[JNO90] James, R., Newman, M. F. and O'Brien, E. A., The groups of order 128, J. Algebra, 129 (1990), 136--158.
[LN17] Lübeck, F. and Neunhöffer, M.,
GAPDoc (version 1.6),
RWTH Aachen
(2017)
(
GAP package,
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html
).
[Lod82] Loday, J. L., Spaces with finitely many non-trivial homotopy groups, J. App. Algebra, 24 (1982), 179--202.
[Moo01] Moore, E. J., Graphs of Groups: Word Computations and Free Crossed Resolutions, Ph.{D}.~thesis, University of Wales, Bangor (2001).
[Nor87] Norrie, K. J., Crossed modules and analogues of group theorems, Ph.{D}.~thesis, King's College, University of London (1987).
[Nor90] Norrie, K. J., Actions and automorphisms of crossed modules, Bull. Soc. Math. France, 118 (1990), 129--146.
[Whi48] Whitehead, J. H. C., On operators in relative homotopy groups, Ann. of Math., 49 (1948), 610--640.
[Whi49] Whitehead, J. H. C., Combinatorial homotopy II, Bull. Amer. Math. Soc., 55 (1949), 453--496.
generated by GAPDoc2HTML