Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter] 

Index

* (for bipartitions) 5.4
< (for bipartitions) 5.4
= (for bipartitions) 5.4
\<, for Green's classes 4.4-1
\^, for an matrix over finite field group and matrix over finite field 7.3-2
ApsisMonoid 2.5-9
AsBipartition 5.3-1
AsBipartitionSemigroup 2.4-1
AsBlockBijection 5.3-2
AsBlockBijectionSemigroup 2.4-1
AsLookupTable 8.2-5
AsMatrix, for a matrix over finite field 7.2-11
AsMatrixGroup 7.3-4
AsMatrixSemigroup 2.4-1
AsPartialPerm, for a bipartition 5.3-4
AsPartialPermSemigroup 2.4-1
AsPermutation, for a bipartition 5.3-5
AsRMSCongruenceByLinkedTriple 8.3-7
AsRZMSCongruenceByLinkedTriple 8.3-7
AsSemigroupCongruenceByGeneratingPairs 8.3-6
AsTransformation, for a bipartition 5.3-3
AsTransformationSemigroup 2.4-1
BaseDomain, for a matrix over finite field 7.2-9
Bipartition 5.2-1
BipartitionByIntRep 5.2-2
BipartitionFamily 5.1-3
BlocksNC 5.6-1
BrauerMonoid 2.5-4
CanonicalForm, for a free inverse semigroup element 6.3-1
CanonicalRepresentative 8.3-5
CharacterTableOfInverseSemigroup 4.7-16
ClosureInverseSemigroup 2.2-1
ClosureSemigroup 2.2-2
ComponentRepsOfPartialPermSemigroup 4.5-19
ComponentRepsOfTransformationSemigroup 4.5-15
ComponentsOfPartialPermSemigroup 4.5-20
ComponentsOfTransformationSemigroup 4.5-16
CongruenceClasses 8.2-2
CongruenceClassOfElement 8.2-1
CongruencesOfSemigroup 8.2-4
ConstructingFilter, for a matrix over finite field 7.2-12
CrossedApsisMonoid 2.5-9
CyclesOfPartialPerm 4.5-21
CyclesOfPartialPermSemigroup 4.5-22
CyclesOfTransformationSemigroup 4.5-17
DClass 4.2-2
DClasses 4.3-1
DClassNC 4.2-3
DClassOfHClass 4.2-1
DClassOfLClass 4.2-1
DClassOfRClass 4.2-1
DClassReps 4.3-4
DegreeOfBipartition 5.5-1
DegreeOfBipartitionCollection 5.5-1
DegreeOfBipartitionSemigroup 5.9-5
DegreeOfBlocks 5.6-4
DegreeOfMatrixOverFiniteField, for a matrix over finite field 7.2-8
DotDClasses 4.8-2
DotDClasses, for a semigroup 4.8-2
DotSemilatticeOfIdempotents 4.8-3
DualSymmetricInverseMonoid 2.5-7
DualSymmetricInverseSemigroup 2.5-7
EndomorphismsPartition 2.5-1
EnumeratePosition 10.1-1
EvaluateWord 4.1-1
ExtRepOfBipartition 5.5-3
ExtRepOfBlocks 5.6-2
FactorisableDualSymmetricInverseSemigroup 2.5-8
Factorization 4.1-2
FreeBand, for a given rank 6.4-1
FreeBand, for a list of names 6.4-1
FreeBand, for various names 6.4-1
FreeInverseSemigroup, for a given rank 6.1-1
FreeInverseSemigroup, for a list of names 6.1-1
FreeInverseSemigroup, for various names 6.1-1
FullMatrixSemigroup 2.5-11
GeneralLinearSemigroup 2.5-11
Generators 4.5-1
GeneratorsOfSemigroupIdeal 3.2-1
GeneratorsSmallest, for a transformation semigroup 4.5-25
GLS 2.5-11
GreensDClasses 4.3-1
GreensDClassOfElement 4.2-2
GreensDClassOfElement, for a free band and a free band element 6.5-1
GreensDClassOfElementNC 4.2-3
GreensHClasses 4.3-1
GreensHClassOfElement 4.2-2
GreensHClassOfElement, for a Rees matrix semigroup 4.2-2
GreensHClassOfElementNC 4.2-3
GreensJClasses 4.3-1
GreensLClasses 4.3-1
GreensLClassOfElement 4.2-2
GreensLClassOfElementNC 4.2-3
GreensRClasses 4.3-1
GreensRClassOfElement 4.2-2
GreensRClassOfElementNC 4.2-3
GroupHClass 4.2-4
GroupOfUnits 4.5-2
HClass 4.2-2
HClass, for a Rees matrix semigroup 4.2-2
HClasses 4.3-1
HClassNC 4.2-3
HClassReps 4.3-4
IdempotentGeneratedSubsemigroup 4.5-5
Idempotents 4.5-3
IdentityBipartition 5.2-3
InfoSemigroups 1.5-1
InjectionPrincipalFactor 4.4-2
InverseLeftBlocks 5.7-5
InverseRightBlocks 5.7-4
InverseSubsemigroupByProperty 2.2-4
IrredundantGeneratingSubset 4.5-6
IsAperiodicSemigroup 4.6-16
IsBand 4.6-1
IsBipartition 5.1-1
IsBipartitionCollection 5.1-2
IsBipartitionMonoid 5.9-1
IsBipartitionSemigroup 5.9-1
IsBipartitionSemigroupGreensClass 4.4-16
IsBlockBijection 5.5-13
IsBlockBijectionMonoid 5.9-2
IsBlockBijectionSemigroup 5.9-2
IsBlockGroup 4.6-2
IsBrandtSemigroup 4.7-2
IsCliffordSemigroup 4.7-1
IsCombinatorialSemigroup 4.6-16
IsCommutativeSemigroup 4.6-3
IsCompletelyRegularSemigroup 4.6-4
IsCompletelySimpleSemigroup 4.6-19
IsCongruenceFreeSemigroup 4.6-5
IsDTrivial 4.6-16
IsDualTransBipartition 5.5-10
IsEUnitaryInverseSemigroup 4.7-3
IsFactorisableSemigroup 4.7-4
IsFreeBand, for a given semigroup 6.4-3
IsFreeBandCategory 6.4-2
IsFreeBandElement 6.4-4
IsFreeBandSubsemigroup 6.4-5
IsFreeInverseSemigroup 6.1-3
IsFreeInverseSemigroupCategory 6.1-2
IsFreeInverseSemigroupElement 6.1-4
IsGreensClassNC 4.4-14
IsGreensDLeq 4.4-20
IsGroupAsSemigroup 4.6-6
IsHTrivial 4.6-16
IsIdempotentGenerated 4.6-7
IsIsomorphicSemigroup 9.1-1
IsJoinIrreducible 4.7-5
IsLeftSimple 4.6-8
IsLeftZeroSemigroup 4.6-9
IsLinkedTriple 8.3-4
IsLTrivial 4.6-16
IsMajorantlyClosed 4.7-6
IsMatrixMonoid 7.1-1
IsMatrixOverFiniteField 7.2-1
IsMatrixOverFiniteFieldCollection 7.2-2
IsMatrixOverFiniteFieldGroup 7.3-1
IsMatrixSemigroup 7.1-1
IsMatrixSemigroupGreensClass 4.4-18
IsMaximalSubsemigroup 4.5-9
IsMonogenicInverseSemigroup 4.7-7
IsMonogenicSemigroup 4.6-10
IsMonoidAsSemigroup 4.6-11
IsomorphismBipartitionMonoid 2.4-3
IsomorphismBipartitionSemigroup 2.4-3
IsomorphismBlockBijectionMonoid 2.4-4
IsomorphismBlockBijectionSemigroup 2.4-4
IsomorphismMatrixGroup 7.3-3
IsomorphismMatrixSemigroup 2.4-5
IsomorphismPermGroup 2.4-2
IsomorphismReesMatrixSemigroup 4.4-2
IsomorphismSemigroups 9.1-3
IsOrthodoxSemigroup 4.6-12
IsPartialPermBipartition 5.5-12
IsPartialPermBipartitionMonoid 5.9-3
IsPartialPermBipartitionSemigroup 5.9-3
IsPartialPermSemigroupGreensClass 4.4-17
IsPermBipartition 5.5-11
IsPermBipartitionGroup 5.9-4
IsRectangularBand 4.6-13
IsRegularClass 4.4-4
IsRegularSemigroup 4.6-14
IsRightSimple 4.6-8
IsRightZeroSemigroup 4.6-15
IsRMSCongruenceByLinkedTriple 8.3-1
IsRTrivial 4.6-16
IsRZMSCongruenceByLinkedTriple 8.3-1
IsSemiBand 4.6-7
IsSemigroupWithAdjoinedZero 4.6-17
IsSemigroupWithCommutingIdempotents 4.6-2
IsSemilattice 4.6-18
IsSimpleSemigroup 4.6-19
IsSynchronizingSemigroup 4.6-20
IsSynchronizingTransformationCollection 4.6-20
IsTransBipartition 5.5-9
IsTransformationSemigroupGreensClass 4.4-15
IsTransitive, for a transformation semigroup and a pos int 4.5-18
IsTransitive, for a transformation semigroup and a set 4.5-18
IsUniformBlockBijection 5.5-14
IsUniversalSemigroupCongruence 8.4-1
IsZeroGroup 4.6-21
IsZeroRectangularBand 4.6-22
IsZeroSemigroup 4.6-23
IsZeroSimpleSemigroup 4.6-24
IteratorFromGeneratorsFile 1.6-4
IteratorOfDClasses 4.3-3
IteratorOfDClassReps 4.3-2
IteratorOfHClasses 4.3-3
IteratorOfHClassReps 4.3-2
IteratorOfLClasses 4.3-3
IteratorOfLClassReps 4.3-2
IteratorOfRClasses 4.3-3
IteratorOfRClassReps 4.3-2
JClasses 4.3-1
JoinIrreducibleDClasses 4.7-8
JoinSemigroupCongruences 8.3-9
JonesMonoid 2.5-5
LargestElementSemigroup 4.5-24
LClass 4.2-2
LClasses 4.3-1
LClassNC 4.2-3
LClassOfHClass 4.2-1
LClassReps 4.3-4
LeftBlocks 5.5-5
LeftInverse, for a matrix over finite field 7.2-7
LeftOne, for a bipartition 5.2-4
LeftProjection 5.2-4
LeftZeroSemigroup 2.5-20
LookForInOrb 10.1-2
MajorantClosure 4.7-9
MatrixSemigroup 7.1-2
MaximalDClasses 4.4-10
MaximalSubsemigroups, for a Rees (0-)matrix semigroup, and a group 4.5-8
MaximalSubsemigroups, for an acting semigroup 4.5-7
MeetSemigroupCongruences 8.3-8
MinimalDClass 4.4-9
MinimalIdeal 4.5-10
MinimalIdealGeneratingSet 3.2-2
MinimalWord, for free inverse semigroup element 6.3-2
Minorants 4.7-10
ModularPartitionMonoid 2.5-10
MonogenicSemigroup 2.5-17
MultiplicativeNeutralElement, for an H-class 4.4-13
MultiplicativeZero 4.5-12
MunnSemigroup 2.5-13
NaturalLeqBlockBijection 5.4-3
NaturalLeqPartialPermBipartition 5.4-2
NewIdentityMatrixOverFiniteField 7.2-4
NewMatrixOverFiniteField, for a filter, a field, an integer, and a list 7.2-3
NewZeroMatrixOverFiniteField 7.2-4
Normalizer, for a perm group, semigroup, record 4.5-23
Normalizer, for a semigroup, record 4.5-23
NrBlocks, for a bipartition 5.5-8
NrBlocks, for blocks 5.5-8
NrCongruenceClasses 8.2-3
NrDClasses 4.4-6
NrHClasses 4.4-6
NrIdempotents 4.5-4
NrLClasses 4.4-6
NrLeftBlocks 5.5-6
NrRClasses 4.4-6
NrRegularDClasses 4.4-5
NrRightBlocks 5.5-7
NrTransverseBlocks, for a bipartition 5.5-2
NrTransverseBlocks, for blocks 5.6-3
OnLeftBlocks 5.7-2
OnRightBlocks 5.7-1
OnRightBlocksBipartitionByPerm 5.4-5
OrbSCC 10.2-1
OrbSCCLookup 10.2-2
OrbSCCTruthTable 10.2-3
OrderEndomorphisms, monoid of order preserving transformations 2.5-14
PartialOrderOfDClasses 4.4-7
PartialPermLeqBipartition 5.4-1
PartialTransformationSemigroup 2.5-6
PartitionMonoid 2.5-2
PermLeftBlocks 5.7-3
PermLeftQuoBipartition 5.4-4
PermRightBlocks 5.7-3
PlanarModularPartitionMonoid 2.5-10
PlanarPartitionMonoid 2.5-3
PlanarUniformBlockBijectionMonoid 2.5-8
POI, monoid of order preserving partial perms 2.5-14
POPI, monoid of orientation preserving partial perms 2.5-14
PrimitiveIdempotents 4.7-11
PrincipalFactor 4.4-3
Random, for a semigroup 4.5-13
RandomBinaryRelationMonoid 2.1-4
RandomBinaryRelationSemigroup 2.1-4
RandomBipartition 5.2-7
RandomBipartitionMonoid 2.1-5
RandomBipartitionSemigroup 2.1-5
RandomInverseMonoid 2.1-1
RandomInverseSemigroup 2.1-1
RandomMatrixMonoid 2.1-6
RandomMatrixSemigroup 2.1-6
RandomPartialPermMonoid 2.1-3
RandomPartialPermSemigroup 2.1-3
RandomTransformationMonoid 2.1-2
RandomTransformationSemigroup 2.1-2
RankOfBipartition 5.5-2
RankOfBlocks 5.6-3
RClass 4.2-2
RClasses 4.3-1
RClassNC 4.2-3
RClassOfHClass 4.2-1
RClassReps 4.3-4
ReadGenerators 1.6-2
RectangularBand 2.5-18
RegularBinaryRelationSemigroup 2.5-16
RegularDClasses 4.4-5
RepresentativeOfMinimalDClass 4.5-11
RepresentativeOfMinimalIdeal 4.5-11
ReverseSchreierTreeOfSCC 10.2-4
RightBlocks 5.5-4
RightCosetsOfInverseSemigroup 4.7-12
RightInverse, for a matrix over finite field 7.2-7
RightOne, for a bipartition 5.2-5
RightProjection 5.2-5
RightZeroSemigroup 2.5-20
RMSCongruenceByLinkedTriple 8.3-2
RMSCongruenceClassByLinkedTriple 8.3-3
RowRank, for a matrix over finite field 7.2-6
RowSpaceBasis, for a matrix over finite field 7.2-5
RowSpaceTransformation, for a matrix over finite field 7.2-5
RowSpaceTransformationInv, for a matrix over finite field 7.2-5
RZMSCongruenceByLinkedTriple 8.3-2
RZMSCongruenceClassByLinkedTriple 8.3-3
SameMinorantsSubgroup 4.7-13
SchreierTreeOfSCC 10.2-5
SchutzenbergerGroup 4.4-8
SemigroupCongruence 8.1-1
SemigroupIdeal 3.1-1
Semigroups package overview 1.
SemigroupsDir 1.6-1
SemigroupsMakeDoc 1.3-1
SemigroupsOptionsRec 2.3-1
SemigroupsTestAll 1.4-3
SemigroupsTestInstall 1.4-1
SemigroupsTestManualExamples 1.4-2
SingularApsisMonoid 2.5-9
SingularBrauerMonoid 2.5-4
SingularCrossedApsisMonoid 2.5-9
SingularDualSymmetricInverseSemigroup 2.5-7
SingularFactorisableDualSymmetricInverseSemigroup 2.5-8
SingularJonesMonoid 2.5-5
SingularModularPartitionMonoid 2.5-10
SingularPartitionMonoid 2.5-2
SingularPlanarModularPartitionMonoid 2.5-10
SingularPlanarPartitionMonoid 2.5-3
SingularPlanarUniformBlockBijectionMonoid 2.5-8
SingularTransformationMonoid 2.5-15
SingularTransformationSemigroup 2.5-15
SingularUniformBlockBijectionMonoid 2.5-8
SLS 2.5-12
SmallerDegreePartialPermRepresentation 4.7-14
SmallestElementSemigroup 4.5-24
SmallestMultiplicationTable 9.1-2
SmallGeneratingSet 4.5-14
SmallInverseMonoidGeneratingSet 4.5-14
SmallInverseSemigroupGeneratingSet 4.5-14
SmallMonoidGeneratingSet 4.5-14
SmallSemigroupGeneratingSet 4.5-14
SpecialLinearSemigroup 2.5-12
Splash 4.8-1
Star 5.2-6
StarOp 5.2-6
StructureDescription, for an H-class 4.4-19
StructureDescriptionMaximalSubgroups 4.4-12
StructureDescriptionSchutzenbergerGroups 4.4-11
SubsemigroupByProperty, for a semigroup and function 2.2-3
SubsemigroupByProperty, for a semigroup, function, and limit on the size of the subsemigroup 2.2-3
SupersemigroupOfIdeal 3.2-3
TemperleyLiebMonoid 2.5-5
TikzBipartition 5.8-1
TikzBlocks 5.8-2
TraceSchreierTreeOfSCCBack 10.2-6
TraceSchreierTreeOfSCCForward 10.2-7
TransposedMatImmutable, for a matrix over finite field 7.2-10
UnderlyingSemigroupOfSemigroupWithAdjoinedZero 4.5-26
UniformBlockBijectionMonoid 2.5-8
UniversalSemigroupCongruence 8.4-2
VagnerPrestonRepresentation 4.7-15
WriteGenerators 1.6-3
ZeroSemigroup 2.5-19

 [Top of Book]  [Contents]   [Previous Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 Bib Ind

generated by GAPDoc2HTML