Most of the matrix tool operations listed in Appendix B.1 which return a new matrix are lazy evaluated. The value of a homalg matrix is stored in the attribute Eval
. Below is the list of the installed methods for the attribute Eval
.
‣ Eval ( C ) | ( method ) |
Returns: the Eval
value of a homalg matrix C
In case the matrix C was created using HomalgInitialMatrix
(5.2-1) then the filter IsInitialMatrix
for C is set to true and the homalgTable
function (--> InitialMatrix
(B.1-1)) will be used to set the attribute Eval
and resets the filter IsInitialMatrix
.
InstallMethod( Eval, "for homalg matrices (IsInitialMatrix)", [ IsHomalgMatrix and IsInitialMatrix and HasNrRows and HasNrColumns ], function( C ) local R, RP, z, zz; R := HomalgRing( C ); RP := homalgTable( R ); if IsBound( RP!.InitialMatrix ) then ResetFilterObj( C, IsInitialMatrix ); return RP!.InitialMatrix( C ); fi; if not IsHomalgInternalMatrixRep( C ) then Error( "could not find a procedure called InitialMatrix in the ", "homalgTable to evaluate a non-internal initial matrix\n" ); fi; #=====# can only work for homalg internal matrices #=====# z := Zero( HomalgRing( C ) ); ResetFilterObj( C, IsInitialMatrix ); zz := ListWithIdenticalEntries( NrColumns( C ), z ); return homalgInternalMatrixHull( List( [ 1 .. NrRows( C ) ], i -> ShallowCopy( zz ) ) ); end );
‣ Eval ( C ) | ( method ) |
Returns: the Eval
value of a homalg matrix C
In case the matrix C was created using HomalgInitialIdentityMatrix
(5.2-2) then the filter IsInitialIdentityMatrix
for C is set to true and the homalgTable
function (--> InitialIdentityMatrix
(B.1-2)) will be used to set the attribute Eval
and resets the filter IsInitialIdentityMatrix
.
InstallMethod( Eval, "for homalg matrices (IsInitialIdentityMatrix)", [ IsHomalgMatrix and IsInitialIdentityMatrix and HasNrRows and HasNrColumns ], function( C ) local R, RP, o, z, zz, id; R := HomalgRing( C ); RP := homalgTable( R ); if IsBound( RP!.InitialIdentityMatrix ) then ResetFilterObj( C, IsInitialIdentityMatrix ); return RP!.InitialIdentityMatrix( C ); fi; if not IsHomalgInternalMatrixRep( C ) then Error( "could not find a procedure called InitialIdentityMatrix in the ", "homalgTable to evaluate a non-internal initial identity matrix\n" ); fi; #=====# can only work for homalg internal matrices #=====# z := Zero( HomalgRing( C ) ); o := One( HomalgRing( C ) ); ResetFilterObj( C, IsInitialIdentityMatrix ); zz := ListWithIdenticalEntries( NrColumns( C ), z ); id := List( [ 1 .. NrRows( C ) ], function(i) local z; z := ShallowCopy( zz ); z[i] := o; return z; end ); return homalgInternalMatrixHull( id ); end );
‣ Eval ( C ) | ( method ) |
Returns: the Eval
value of a homalg matrix C
In case the matrix C was created using HomalgZeroMatrix
(5.2-3) then the filter IsZeroMatrix
for C is set to true and the homalgTable
function (--> ZeroMatrix
(B.1-3)) will be used to set the attribute Eval
.
InstallMethod( Eval, "for homalg matrices (IsZero)", [ IsHomalgMatrix and IsZero and HasNrRows and HasNrColumns ], 20, function( C ) local R, RP, z; R := HomalgRing( C ); RP := homalgTable( R ); if ( NrRows( C ) = 0 or NrColumns( C ) = 0 ) and not ( IsBound( R!.SafeToEvaluateEmptyMatrices ) and R!.SafeToEvaluateEmptyMatrices = true ) then Info( InfoWarning, 1, "\033[01m\033[5;31;47m", "an empty matrix is about to get evaluated!", "\033[0m" ); fi; if IsBound( RP!.ZeroMatrix ) then return RP!.ZeroMatrix( C ); fi; if not IsHomalgInternalMatrixRep( C ) then Error( "could not find a procedure called ZeroMatrix ", "homalgTable to evaluate a non-internal zero matrix\n" ); fi; #=====# can only work for homalg internal matrices #=====# z := Zero( HomalgRing( C ) ); ## copying the rows saves memory; ## we assume that the entries are never modified!!! return homalgInternalMatrixHull( ListWithIdenticalEntries( NrRows( C ), ListWithIdenticalEntries( NrColumns( C ), z ) ) ); end );
‣ Eval ( C ) | ( method ) |
Returns: the Eval
value of a homalg matrix C
In case the matrix C was created using HomalgIdentityMatrix
(5.2-4) then the filter IsOne
for C is set to true and the homalgTable
function (--> IdentityMatrix
(B.1-4)) will be used to set the attribute Eval
.
InstallMethod( Eval, "for homalg matrices (IsOne)", [ IsHomalgMatrix and IsOne and HasNrRows and HasNrColumns ], 10, function( C ) local R, id, RP, o, z, zz; R := HomalgRing( C ); if IsBound( R!.IdentityMatrices ) then id := ElmWPObj( R!.IdentityMatrices!.weak_pointers, NrColumns( C ) ); if id <> fail then R!.IdentityMatrices!.cache_hits := R!.IdentityMatrices!.cache_hits + 1; return id; fi; ## we do not count cache_misses as it is equivalent to counter fi; RP := homalgTable( R ); if IsBound( RP!.IdentityMatrix ) then id := RP!.IdentityMatrix( C ); SetElmWPObj( R!.IdentityMatrices!.weak_pointers, NrColumns( C ), id ); R!.IdentityMatrices!.counter := R!.IdentityMatrices!.counter + 1; return id; fi; if not IsHomalgInternalMatrixRep( C ) then Error( "could not find a procedure called IdentityMatrix ", "homalgTable to evaluate a non-internal identity matrix\n" ); fi; #=====# can only work for homalg internal matrices #=====# z := Zero( HomalgRing( C ) ); o := One( HomalgRing( C ) ); zz := ListWithIdenticalEntries( NrColumns( C ), z ); id := List( [ 1 .. NrRows( C ) ], function(i) local z; z := ShallowCopy( zz ); z[i] := o; return z; end ); id := homalgInternalMatrixHull( id ); SetElmWPObj( R!.IdentityMatrices!.weak_pointers, NrColumns( C ), id ); return id; end );
‣ Eval ( LI ) | ( method ) |
Returns: see below
In case the matrix LI was created using LeftInverseLazy
(5.5-4) then the filter HasEvalLeftInverse
for LI is set to true and the method listed below will be used to set the attribute Eval
. (--> LeftInverse
(5.5-2))
InstallMethod( Eval, "for homalg matrices", [ IsHomalgMatrix and HasEvalLeftInverse ], function( LI ) local left_inv; left_inv := LeftInverse( EvalLeftInverse( LI ) ); if IsBool( left_inv ) then return false; fi; return Eval( left_inv ); end );
‣ Eval ( RI ) | ( method ) |
Returns: see below
In case the matrix RI was created using RightInverseLazy
(5.5-5) then the filter HasEvalRightInverse
for RI is set to true and the method listed below will be used to set the attribute Eval
. (--> RightInverse
(5.5-3))
InstallMethod( Eval, "for homalg matrices", [ IsHomalgMatrix and HasEvalRightInverse ], function( RI ) local right_inv; right_inv := RightInverse( EvalRightInverse( RI ) ); if IsBool( right_inv ) then return false; fi; return Eval( right_inv ); end );
‣ Eval ( C ) | ( method ) |
Returns: the Eval
value of a homalg matrix C
In case the matrix was created using Involution
(5.5-6) then the filter HasEvalInvolution
for C is set to true and the homalgTable
function Involution
(B.1-5) will be used to set the attribute Eval
.
InstallMethod( Eval, "for homalg matrices (HasEvalInvolution)", [ IsHomalgMatrix and HasEvalInvolution ], function( C ) local R, RP, M; R := HomalgRing( C ); RP := homalgTable( R ); M := EvalInvolution( C ); if IsBound(RP!.Involution) then return RP!.Involution( M ); fi; if not IsHomalgInternalMatrixRep( C ) then Error( "could not find a procedure called Involution ", "in the homalgTable of the non-internal ring\n" ); fi; #=====# can only work for homalg internal matrices #=====# return homalgInternalMatrixHull( TransposedMat( Eval( M )!.matrix ) ); end );
‣ Eval ( C ) | ( method ) |
Returns: the Eval
value of a homalg matrix C
In case the matrix was created using CertainRows
(5.5-7) then the filter HasEvalCertainRows
for C is set to true and the homalgTable
function CertainRows
(B.1-6) will be used to set the attribute Eval
.
InstallMethod( Eval, "for homalg matrices (HasEvalCertainRows)", [ IsHomalgMatrix and HasEvalCertainRows ], function( C ) local R, RP, e, M, plist; R := HomalgRing( C ); RP := homalgTable( R ); e := EvalCertainRows( C ); M := e[1]; plist := e[2]; if IsBound(RP!.CertainRows) then return RP!.CertainRows( M, plist ); fi; if not IsHomalgInternalMatrixRep( C ) then Error( "could not find a procedure called CertainRows ", "in the homalgTable of the non-internal ring\n" ); fi; #=====# can only work for homalg internal matrices #=====# return homalgInternalMatrixHull( Eval( M )!.matrix{ plist } ); end );
‣ Eval ( C ) | ( method ) |
Returns: the Eval
value of a homalg matrix C
In case the matrix was created using CertainColumns
(5.5-8) then the filter HasEvalCertainColumns
for C is set to true and the homalgTable
function CertainColumns
(B.1-7) will be used to set the attribute Eval
.
InstallMethod( Eval, "for homalg matrices (HasEvalCertainColumns)", [ IsHomalgMatrix and HasEvalCertainColumns ], function( C ) local R, RP, e, M, plist; R := HomalgRing( C ); RP := homalgTable( R ); e := EvalCertainColumns( C ); M := e[1]; plist := e[2]; if IsBound(RP!.CertainColumns) then return RP!.CertainColumns( M, plist ); fi; if not IsHomalgInternalMatrixRep( C ) then Error( "could not find a procedure called CertainColumns ", "in the homalgTable of the non-internal ring\n" ); fi; #=====# can only work for homalg internal matrices #=====# return homalgInternalMatrixHull( Eval( M )!.matrix{[ 1 .. NrRows( M ) ]}{plist} ); end );
‣ Eval ( C ) | ( method ) |
Returns: the Eval
value of a homalg matrix C
In case the matrix was created using UnionOfRows
(5.5-9) then the filter HasEvalUnionOfRows
for C is set to true and the homalgTable
function UnionOfRows
(B.1-8) will be used to set the attribute Eval
.
InstallMethod( Eval, "for homalg matrices (HasEvalUnionOfRows)", [ IsHomalgMatrix and HasEvalUnionOfRows ], function( C ) local R, RP, e, A, B, U; R := HomalgRing( C ); RP := homalgTable( R ); e := EvalUnionOfRows( C ); A := e[1]; B := e[2]; if IsBound(RP!.UnionOfRows) then return RP!.UnionOfRows( A, B ); fi; if not IsHomalgInternalMatrixRep( C ) then Error( "could not find a procedure called UnionOfRows ", "in the homalgTable of the non-internal ring\n" ); fi; #=====# can only work for homalg internal matrices #=====# U := ShallowCopy( Eval( A )!.matrix ); U{ [ NrRows( A ) + 1 .. NrRows( A ) + NrRows( B ) ] } := Eval( B )!.matrix; return homalgInternalMatrixHull( U ); end );
‣ Eval ( C ) | ( method ) |
Returns: the Eval
value of a homalg matrix C
In case the matrix was created using UnionOfColumns
(5.5-10) then the filter HasEvalUnionOfColumns
for C is set to true and the homalgTable
function UnionOfColumns
(B.1-9) will be used to set the attribute Eval
.
InstallMethod( Eval, "for homalg matrices (HasEvalUnionOfColumns)", [ IsHomalgMatrix and HasEvalUnionOfColumns ], function( C ) local R, RP, e, A, B, U; R := HomalgRing( C ); RP := homalgTable( R ); e := EvalUnionOfColumns( C ); A := e[1]; B := e[2]; if IsBound(RP!.UnionOfColumns) then return RP!.UnionOfColumns( A, B ); fi; if not IsHomalgInternalMatrixRep( C ) then Error( "could not find a procedure called UnionOfColumns ", "in the homalgTable of the non-internal ring\n" ); fi; #=====# can only work for homalg internal matrices #=====# U := List( Eval( A )!.matrix, ShallowCopy ); U{ [ 1 .. NrRows( A ) ] } { [ NrColumns( A ) + 1 .. NrColumns( A ) + NrColumns( B ) ] } := Eval( B )!.matrix; return homalgInternalMatrixHull( U ); end );
‣ Eval ( C ) | ( method ) |
Returns: the Eval
value of a homalg matrix C
In case the matrix was created using DiagMat
(5.5-11) then the filter HasEvalDiagMat
for C is set to true and the homalgTable
function DiagMat
(B.1-10) will be used to set the attribute Eval
.
InstallMethod( Eval, "for homalg matrices (HasEvalDiagMat)", [ IsHomalgMatrix and HasEvalDiagMat ], function( C ) local R, RP, e, z, m, n, diag, mat; R := HomalgRing( C ); RP := homalgTable( R ); e := EvalDiagMat( C ); if IsBound(RP!.DiagMat) then return RP!.DiagMat( e ); fi; if not IsHomalgInternalMatrixRep( C ) then Error( "could not find a procedure called DiagMat ", "in the homalgTable of the non-internal ring\n" ); fi; #=====# can only work for homalg internal matrices #=====# z := Zero( R ); m := Sum( List( e, NrRows ) ); n := Sum( List( e, NrColumns ) ); diag := List( [ 1 .. m ], a -> List( [ 1 .. n ], b -> z ) ); m := 0; n := 0; for mat in e do diag{ [ m + 1 .. m + NrRows( mat ) ] }{ [ n + 1 .. n + NrColumns( mat ) ] } := Eval( mat )!.matrix; m := m + NrRows( mat ); n := n + NrColumns( mat ); od; return homalgInternalMatrixHull( diag ); end );
‣ Eval ( C ) | ( method ) |
Returns: the Eval
value of a homalg matrix C
In case the matrix was created using KroneckerMat
(5.5-12) then the filter HasEvalKroneckerMat
for C is set to true and the homalgTable
function KroneckerMat
(B.1-11) will be used to set the attribute Eval
.
InstallMethod( Eval, "for homalg matrices (HasEvalKroneckerMat)", [ IsHomalgMatrix and HasEvalKroneckerMat ], function( C ) local R, RP, A, B; R := HomalgRing( C ); if ( HasIsCommutative( R ) and not IsCommutative( R ) ) and ( HasIsSuperCommutative( R ) and not IsSuperCommutative( R ) ) then Info( InfoWarning, 1, "\033[01m\033[5;31;47m", "the Kronecker product is only defined for (super) commutative rings!", "\033[0m" ); fi; RP := homalgTable( R ); A := EvalKroneckerMat( C )[1]; B := EvalKroneckerMat( C )[2]; if IsBound(RP!.KroneckerMat) then return RP!.KroneckerMat( A, B ); fi; if not IsHomalgInternalMatrixRep( C ) then Error( "could not find a procedure called KroneckerMat ", "in the homalgTable of the non-internal ring\n" ); fi; #=====# can only work for homalg internal matrices #=====# return homalgInternalMatrixHull( KroneckerProduct( Eval( A )!.matrix, Eval( B )!.matrix ) ); ## this was easy, thanks GAP :) end );
‣ Eval ( C ) | ( method ) |
Returns: the Eval
value of a homalg matrix C
In case the matrix was created using \*
(5.5-13) then the filter HasEvalMulMat
for C is set to true and the homalgTable
function MulMat
(B.1-12) will be used to set the attribute Eval
.
InstallMethod( Eval, "for homalg matrices (HasEvalMulMat)", [ IsHomalgMatrix and HasEvalMulMat ], function( C ) local R, RP, e, a, A; R := HomalgRing( C ); RP := homalgTable( R ); e := EvalMulMat( C ); a := e[1]; A := e[2]; if IsBound(RP!.MulMat) then return RP!.MulMat( a, A ); fi; if not IsHomalgInternalMatrixRep( C ) then Error( "could not find a procedure called MulMat ", "in the homalgTable of the non-internal ring\n" ); fi; #=====# can only work for homalg internal matrices #=====# return a * Eval( A ); end ); InstallMethod( Eval, "for homalg matrices (HasEvalMulMatRight)", [ IsHomalgMatrix and HasEvalMulMatRight ], function( C ) local R, RP, e, A, a; R := HomalgRing( C ); RP := homalgTable( R ); e := EvalMulMatRight( C ); A := e[1]; a := e[2]; if IsBound(RP!.MulMatRight) then return RP!.MulMatRight( A, a ); fi; if not IsHomalgInternalMatrixRep( C ) then Error( "could not find a procedure called MulMatRight ", "in the homalgTable of the non-internal ring\n" ); fi; #=====# can only work for homalg internal matrices #=====# return Eval( A ) * a; end );
‣ Eval ( C ) | ( method ) |
Returns: the Eval
value of a homalg matrix C
In case the matrix was created using \+
(5.5-14) then the filter HasEvalAddMat
for C is set to true and the homalgTable
function AddMat
(B.1-13) will be used to set the attribute Eval
.
InstallMethod( Eval, "for homalg matrices (HasEvalAddMat)", [ IsHomalgMatrix and HasEvalAddMat ], function( C ) local R, RP, e, A, B; R := HomalgRing( C ); RP := homalgTable( R ); e := EvalAddMat( C ); A := e[1]; B := e[2]; if IsBound(RP!.AddMat) then return RP!.AddMat( A, B ); fi; if not IsHomalgInternalMatrixRep( C ) then Error( "could not find a procedure called AddMat ", "in the homalgTable of the non-internal ring\n" ); fi; #=====# can only work for homalg internal matrices #=====# return Eval( A ) + Eval( B ); end );
‣ Eval ( C ) | ( method ) |
Returns: the Eval
value of a homalg matrix C
In case the matrix was created using \-
(5.5-15) then the filter HasEvalSubMat
for C is set to true and the homalgTable
function SubMat
(B.1-14) will be used to set the attribute Eval
.
InstallMethod( Eval, "for homalg matrices (HasEvalSubMat)", [ IsHomalgMatrix and HasEvalSubMat ], function( C ) local R, RP, e, A, B; R := HomalgRing( C ); RP := homalgTable( R ); e := EvalSubMat( C ); A := e[1]; B := e[2]; if IsBound(RP!.SubMat) then return RP!.SubMat( A, B ); fi; if not IsHomalgInternalMatrixRep( C ) then Error( "could not find a procedure called SubMat ", "in the homalgTable of the non-internal ring\n" ); fi; #=====# can only work for homalg internal matrices #=====# return Eval( A ) - Eval( B ); end );
‣ Eval ( C ) | ( method ) |
Returns: the Eval
value of a homalg matrix C
In case the matrix was created using \*
(5.5-16) then the filter HasEvalCompose
for C is set to true and the homalgTable
function Compose
(B.1-15) will be used to set the attribute Eval
.
InstallMethod( Eval, "for homalg matrices (HasEvalCompose)", [ IsHomalgMatrix and HasEvalCompose ], function( C ) local R, RP, e, A, B; R := HomalgRing( C ); RP := homalgTable( R ); e := EvalCompose( C ); A := e[1]; B := e[2]; if IsBound(RP!.Compose) then return RP!.Compose( A, B ); fi; if not IsHomalgInternalMatrixRep( C ) then Error( "could not find a procedure called Compose ", "in the homalgTable of the non-internal ring\n" ); fi; #=====# can only work for homalg internal matrices #=====# return Eval( A ) * Eval( B ); end );
generated by GAPDoc2HTML