Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

12 Poincare series

12 Poincare series

EfficientNormalSubgroups(G) EfficientNormalSubgroups(G,k)

Inputs a prime-power group G and, optionally, a positive integer k. The default is k=4. The function returns a list of normal subgroups N in G such that the Poincare series for G equals the Poincare series for the direct product (N × (G/N)) up to degree k.

ExpansionOfRationalFunction(f,n)

Inputs a positive integer n and a rational function f(x)=p(x)/q(x) where the degree of the polynomial p(x) is less than that of q(x). It returns a list [a_0 , a_1 , a_2 , a_3 , ... ,a_n] of the first n+1 coefficients of the infinite expansion

f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + ... .

PoincareSeries(G,n) PoincareSeries(R,n) PoincareSeries(L,n) PoincareSeries(G)

Inputs a finite p-group G and a positive integer n. It returns a quotient of polynomials f(x)=P(x)/Q(x) whose coefficient of x^k equals the rank of the vector space H_k(G,Z_p) for all k in the range k=1 to k=n. (The second input variable can be omitted, in which case the function tries to choose a "reasonable" value for n. For 2-groups the function PoincareSeriesLHS(G) can be used to produce an f(x) that is correct in all degrees.)

In place of the group G the function can also input (at least n terms of) a minimal mod p resolution R for G.

Alternatively, the first input variable can be a list L of integers. In this case the coefficient of x^k in f(x) is equal to the (k+1)st term in the list.

PoincareSeriesPrimePart(G,p,n)

Inputs a finite group G, a prime p, and a positive integer n. It returns a quotient of polynomials f(x)=P(x)/Q(x) whose coefficient of x^k equals the rank of the vector space H_k(G,Z_p) for all k in the range k=1 to k=n.

The efficiency of this function needs to be improved.

PoincareSeriesLHS(G)

Inputs a finite 2-group G and returns a quotient of polynomials f(x)=P(x)/Q(x) whose coefficient of x^k equals the rank of the vector space H_k(G,Z_2) for all k.

This function was written by Paul Smith. It use the Singular system for commutative algebra.

Prank(G)

Inputs a p-group G and returns the rank of the largest elementary abelian subgroup.


 


 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 Ind

generated by GAPDoc2HTML