Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

32 Knots and Quandles

32 Knots and Quandles

Knots
PresentationKnotQuandle(gaussCode)

Inputs a Gauss Code of a knot (with the orientations; see GaussCodeOfPureCubicalKnot in HAP package) and outputs the generators and relators of the knot quandle associated (in the form of a record).

PD2GC(PD)

Inputs a Planar Diagram of a knot; outputs the Gauss Code associated (with the orientations).

PlanarDiagramKnot(n,k)

Returns a Planar Diagram for the k-th knot with n crossings (nUNKNOWNEntity(le)12) if it exists; fail otherwise.

GaussCodeKnot(n,k)

Returns a Gauss Code (with orientations) for the k-th knot with n crossings (nUNKNOWNEntity(le)12) if it exists; fail otherwise.

PresentationKnotQuandleKnot(n,k)

Returns generators and relators (in the form of a record) for the k-th knot with n crossings (nUNKNOWNEntity(le)12) if it exists; fail otherwise.

NumberOfHomomorphisms(genRelQ,finiteQ)

Inputs generators and relators genRelQ of a knot quandle (in the form of a record, see above) and a finite quandle finiteQ; outputs the number of homomorphisms from the former to the latter.

PartitionedNumberOfHomomorphisms(genRelQ,finiteQ)

Inputs generators and relators genRelQ of a knot quandle (in the form of a record, see above) and a finite connected quandle finiteQ; outputs a partition of the number of homomorphisms from the former to the latter.

Quandles
ConjugationQuandle(G,n)

Inputs a finite group G and an integer n; outputs the associated n-fold conjugation quandle.

FirstQuandleAxiomIsSatisfied(M)
SecondQuandleAxiomIsSatisfied(M)
ThirdQuandleAxiomIsSatisfied(M)

Inputs a finite magma M; returns true if M satisfy the first/second/third axiom of a quandle, false otherwise.

IsQuandle(M)

Inputs a finite magma M; returns true if M is a quandle, false otherwise.

Quandles(n)

Returns a list of all quandles of size n, nUNKNOWNEntity(le)6. If nUNKNOWNEntity(ge)7, it returns fail.

Quandle(n,k)

Returns the k-th quandle of size n (nUNKNOWNEntity(le)6) if such a quandle exists, fail otherwise.

IdQuandle(Q)

Inputs a quandle Q; and outputs a list of integers [n,k] such that Q is isomorphic to Quandle(n,k). If nUNKNOWNEntity(ge)7, then it returns [n,fail] (where n is the size of Q).

IsLatin(Q)

Inputs a finite quandle Q; returns true if Q is latin, false otherwise.

IsConnectedQuandle(Q)

Inputs a finite quandle Q; returns true if Q is connected, false otherwise.

ConnectedQuandles(n)

Returns a list of all connected quandles of size n.

ConnectedQuandle(n,k)

Returns the k-th quandle of size n if such a quandle exists, fail otherwise.

IdConnectedQuandle(Q)

Inputs a connected quandle Q; and outputs a list of integers [n,k] such that Q is isomorphic to ConnectedQuandle(n,k).

IsQuandleEnvelope(Q,G,e,stigma)

Inputs a set Q, a permutation group G, an element e UNKNOWNEntity(isin) Q and an element stigma UNKNOWNEntity(isin) G; returns true if this structure describes a quandle envelope, false otherwise.

QuandleQuandleEnveloppe(Q,G,e,stigma)

Inputs a set Q, a permutation group G, an element e UNKNOWNEntity(isin) Q and an element stigma UNKNOWNEntity(isin) G. If this structure describes a quandle envelope, the function returns the quandle from this quandle envelope; and fail otherwise. Nb: this quandle is a connected quandle.

KnotInvariantCedric(genRelQ,n,m)

Inputs generators and relators of a knot quandle (in the form of a record, see above) and two integers n and m; outputs a list [n1,n2,...,nk] where nj is a partition of the number of homomorphisms from the considered knot quandle to the j-th connected quandle of size nUNKNOWNEntity(le)iUNKNOWNEntity(le)m.

RightMultiplicationGroupAsPerm(Q)

Inputs a connected quandle Q; output its right multiplication group whose elements are permutations.

RightMultiplicationGroup(Q)

Inputs a connected quandle Q; output its right multiplication group whose elements are mappings from Q to Q.

AutomorphismGroupQuandleAsPerm(Q)

Inputs a connected quandle Q; outputs its automorphism group whose elements are permutations.

AutomorphismGroupQuandle(Q)

Inputs a connected quandle Q; outputs its automorphism group whose elements are mappings from Q to Q.


 


 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 Ind

generated by GAPDoc2HTML