AutomorphismGroupAsCatOneGroup(G)
Inputs a group G and returns the Cat-1-group C corresponding to the crossed module G→ Aut(G). |
HomotopyGroup(C,n)
Inputs a cat-1-group C and an integer n. It returns the nth homotopy group of C. |
HomotopyModule(C,2)
Inputs a cat-1-group C and an integer n=2. It returns the second homotopy group of C as a G-module (i.e. abelian G-outer group) where G is the fundamental group of C. |
QuasiIsomorph(C)
Inputs a cat-1-group C and returns a cat-1-group D for which there exists some homomorphism C→ D that induces isomorphisms on homotopy groups. This function was implemented by Le Van Luyen. |
ModuleAsCatOneGroup(G,alpha,M)
Inputs a group G, an abelian group M and a homomorphism α: G→ Aut(M). It returns the Cat-1-group C corresponding th the zero crossed module 0: M→ G. |
MooreComplex(C)
Inputs a cat-1-group C and returns its Moore complex as a G-complex (i.e. as a complex of groups considered as 1-outer groups). |
NormalSubgroupAsCatOneGroup(G,N)
Inputs a group G with normal subgroup N. It returns the Cat-1-group C corresponding th the inclusion crossed module N→ G. |
XmodToHAP(C)
Inputs a cat-1-group C obtained from the Xmod package and returns a cat-1-group D for which IsHapCatOneGroup(D) returns true. It returns "fail" id C has not been produced by the Xmod package. |
generated by GAPDoc2HTML