Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download
Views: 73
Kernel: SageMath 8.0
%display latex

Spacetime: black hole extension

M = Manifold(4, 'M', r'\mathcal{M}') print M
4-dimensional differentiable manifold M
X.<v,t,th,ph> = M.chart(R' v:(-oo,+oo) t:(0,+oo) th:(0,pi):\theta ph:(0,2*pi):\phi') X

We introduce the new coordinate vv such that dv=dr+dtFdv=dr+\frac{dt}{F}. The metric thus takes the following form:

F=function('F')(t) g = M.lorentzian_metric('g') g[0,0] = F g[1,1] = 0 g[1,0] = -1 g[2,2] = t^2 g[3,3] = (t*sin(th))^2 g.display()
gm1=g.inverse(); gm1.display()

No coordinate singularity appears for F(t)=0F(t)=0 in the metric and inverse metric. It allows to cross both the outer and inner horizons, if they exist.

Radial null vectors

Outgoing null vector

k = M.vector_field(name='k') k[0] = 1 k[1] = F/2 # outgoing since F/2>0 at infinity k.display()

Ingoing null vector

l = M.vector_field(name='l') l[1] = -2 l.display()
kd=k.down(g) ld=l.down(g)

Check that kk is a null vector

kk=kd['_a']*k['^a'] kk.display()

Check that ll is a null vector

ll=ld['_a']*l['^a'] ll.display()

Normalization

lk=ld['_a']*k['^a'] lk.display()

Induced metric

h=g-1/2*(kd*ld+ld*kd)
hu=h.up(g)
h.display()

Expansion of a congruence of null geodesics

nab = g.connection() ; print nab
Levi-Civita connection nabla_g associated with the Lorentzian metric g on the 4-dimensional differentiable manifold M

Check that the covariant derivative does not act on the metric:

nab(g).display()
theta_outgoing=hu['^{ab}']*nab(kd)['_{ab}'] print theta_outgoing
Scalar field on the 4-dimensional differentiable manifold M
theta_outgoing.display()

The zeros of θoutgoing\theta_{outgoing}, hence of FF, correspond to the presence of horizons. The region with F(t)<0F(t)<0, where the expansion of outgoing null rays becomes negative, is a (future) trapped region.

theta_ingoing=theta=hu['^{ab}']*nab(ld)['_{ab}'] print theta_ingoing
Scalar field on the 4-dimensional differentiable manifold M
theta_ingoing.display()

The expansion of ingoing radial null rays is strictly negative, which is expected in the presence of a black hole\textbf{black hole}.

Ricci's scalar

Rscal = g.ricci_scalar().expr() Rscal.factor()

Kretschmann's scalar

R = g.riemann() ; print(R)
Tensor field Riem(g) of type (1,3) on the 4-dimensional differentiable manifold M
uR=R.up(g) dR=R.down(g)
Kr_scalar = uR['^{abcd}']*dR['_{abcd}'] K=Kr_scalar.expr().factor() K