Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

All published worksheets from http://sagenb.org

Views: 168703
Image: ubuntu2004

Multiplication is repeated addition, and division is repeated subtraction, right?

So if finding powers is repeated multiplication, would finding logs be repeated ... division?

pow(2, 7)
1*2*2*2*2*2*2*2
log(128, 2)
128/2/2/2/2/2/2/2

Find the inverse of f(x)=bxf(x) = b^x.

y=bxy = b^x

-------------------------

x=byx = b^y

y=logbxy = \log_{b}x

g(x)=logbxg(x) = \log_{b}x

So ff is the result of beginning with 11 and multiplying by bb xx number of times,

and gg is the number of times, beginning with xx, you must divide by bb to get back to 11.

2^3
pow(2,3)
log(8, 2)

EXAMPLE 1  Changing from Logarithmic to Exponential Form

Write each equation in exponential form:

1a)  $2 = \log_{5}x

x == 5^2
pow(5, 2)
log(25, 5)

y=bxy = b^x

yy is the power, bb is the base, and xx is the exponent.  

A logarithm is an exponent!

Therefore, xx is also a log.  It is the loglog of yyxx is the exponent that relates bb to yy.

If yy is the power of bb to the xx, then xx is the log of yy base bb.

x=logbyx = \log_{b}y

var('y b x') y == pow(b,x)
x == log(b,y)

1b)  3=logb643 = \log_{b}64

pow(b, 3) == 64
b^3 == 64
pow(64, 1/3)

1c)  log37=y\log_{3}7 = y

3^y == 7
(log(7)/log(3)).n(digits = 4)

EXAMPLE 2  Changing from Exponential to Logarithmic Form

Write each equation in log form:

2a)  122=x12^2 = x

2 == log(x, 12)
solve(_, x)

2b)  b3=8b^3 = 8

3 == log(8, b)

2c)  ey=9e^y = 9

y == log(9, e)

EXAMPLE 3  Evaluating Logarithms

3a)  log216\log_{2}16

log(16, 2)

3b)  log7149\log_{7}\frac{1}{49}

log(1/49, 7)
log(6, 36)

http://www.wolframalpha.com/input/?i=log(36%2C+6)

3d)  log337log_3 \sqrt[7]{3}

log(3^(1/7), 3)

http://www.wolframalpha.com/input/?i=log(3%2C+pow(3%2C+1%2F7))

EXAMPLE 4  Using Properties of Logs

4a)  log77\log_7 7

log(7, 7)

4b)  log51\log_5 1

log(1, 5)

EXAMPLE 5  Inverse Log Properties

5a)  log445\log_4 4^5

log(4^5, 4)

5b)  $6^{\log_6 9}

6^log(9, 6)

Log Properties

1.  logb1=0\log_b 1 = 0

var('b x') log(1, b)

2.  logbb=1\log_b b = 1

log(b, b)

3.  logbbx=x\log_b b^x = x

log(b^x, b)

http://www.wolframalpha.com/input/?i=log(b%2C+b^x)

4.  blogbx=xb^{\log_b x} = x

b^log(x, b)

http://www.wolframalpha.com/input/?i=b^log(b%2C+x)

EXAMPLE 6  Graphs of Exponential and Log Functions

Graph f(x)=2xf(x) = 2^x and g(x)=log2xg(x) = \log_2 x.

f(x) = 2^x g(x) = log(x, 2) F = [(x, f(x)) for x in [-3..3]] G = [(y, x) for (x, y) in F]
F
G
show(plot(f, -3, 3, color = 'purple') + plot(g, 1/8, 8, color = 'green') + \ points(F+G, rgbcolor = 'red') + \ line([(-3, -3), (8, 8)], rgbcolor = 'black'), aspect_ratio = 1)

EXAMPLE 7  Finding the Domain of a Log Function

Find the domain of f(x)=log4(x+3)f(x) = \log_4 (x + 3).

f(x) = log(x+3, 4)
f(-3)
g(x) = log(x, 4) f(x) = g(x+3)
show(plot(g, 0, 8, color = 'purple')+plot(f, -3, 5, color = 'green'), aspect_ratio = 1)

EXAMPLE 8  Modeling Heights of Children

f(x)=29+48.8log(x+1)f(x) = 29 + 48.8\log(x+1) models adult height f(x)f(x) of a boy who is xx years old. 

What % of his adult height has an 8 year old boy attained?

f(x) = 29 + 48.8*log(x+1, 10) f(8).n()

EXAMPLE 9  Earthquake Intensity

R=logII0R = \log \frac{I}{I_0} gives magnitude RR of an earthquake of intensity II where I0I_0 is the intensity of a zero level quake.

What was the magnitude of the 1906 San Francisco quake if it was 108.310^{8.3} times as intense as I0I_0?

log(10^8.3, 10)

EXAMPLE 10  Finding Domains of Natural Log Functions

Find each domain:

10a)  f(x)=ln(3x)f(x) = \ln (3 - x)

f(x) = ln(3 - x)
f(3)
f(4)
f(2)
plot(f, -8, 3)

10b)  h(x)=ln(x3)2h(x) = \ln(x - 3)^2

h(x) = ln((x - 3)^2)
plot(h, -1, 7)

EXAMPLE 11  Heat

f(x)=13.4lnx11.6f(x) = 13.4 \ln x - 11.6 models temperature increase f(x)f(x) after xx minutes.  Find the increase after 50 minutes.

f(x) = 13.4*ln(x) - 11.6
f(50).n()