Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

All published worksheets from http://sagenb.org

Views: 168728
Image: ubuntu2004

L'Hopital's Rule for evaluating limits of quotients

 

Let's start with an example:  limx02xsin(x)\lim_{x \rightarrow 0} \frac{2x}{\sin(x)}.

Call the numerator f(x)f(x) and the denominator g(x)g(x).  Both the numerator and denominator are zero when x=0x=0, so we cannot evaluate this limit simply by substituting x=0x=0.  We could try to evaluate the limit via a clever analysis, but this might be difficult.  L'Hopital's idea is to use local linear approximation.  Below is a graph of g(x)=sin(x)g(x)=\sin(x) and its tangent line at x=0x=0.  The tangent line is approximately the same as the graph of the function, when xx is near zero.

x=var('x') g(x)=sin(x) plot(g) curveg=plot(g,(-1,2)) tang=plot(x, (-1,2),rgbcolor=(1,0,1)) show(tang+curveg)

Since $f(x)=2xislinear,itstangentlineisalso is linear, its tangent line is also y=2x. Replacingthefunctions.  Replacing the functions fand and gwiththeirtangentlinesat with their tangent lines at x=0$ we get:

for xx near zero 2xsin(x)2xx\frac{2x}{\sin(x)} \approx \frac{2x}{x}, so $$\lim_{x \rightarrow 0} \frac{2x}{\sin(x)}=\lim_{x \rightarrow 0} \frac{2x}{x} = 2.$$

Theorem (L'Hopital's Rule):  If ff and gg are differentiable functions and aa is any real number or +/+/- \infty and

  • limxaf(x)=+/\lim_{x\rightarrow a} f(x) = +/- \infty and limxag(x)=+/\lim_{x\rightarrow a} g(x) = +/- \infty, or
  • limxaf(x)=limxag(x)=0\lim_{x\rightarrow a} f(x) = \lim_{x\rightarrow a} g(x) = 0, then

$$\lim_{x\rightarrow a}\frac{f(x)}{g(x)} = \lim_{x\rightarrow a}\frac{f'(x)}{g'(x)}.$$

Let's try a few examples:

1.  limxln(x)x\lim_{x\rightarrow \infty} \frac{\ln(x)}{x}

2.  limxx22x\lim_{x\rightarrow \infty} \frac{x^2}{2^x}

3.  limx01cos(x)x2\lim_{x\rightarrow 0} \frac{1-\cos(x)}{x^2}