Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

All published worksheets from http://sagenb.org

Views: 168728
Image: ubuntu2004

Discovering the Fundamental Theorem of Calculus

The Section 5.3 concept review opens with a graph of velocity versus time for a bicycle trip.  After answering the questions on that slide, we now construct a table of values of the distance function s(t)s(t).  These values are found by calculating area bounded by the graph of velocity. 

c=0 t=var('t') s0=c s1=c+.5*1*30*60 s2=s1+1*30*60 s3=s2+.5*1*30*60 s4=s3 s5=s4 s6=s5-.5*1*30*60 s7=s6-1*30*60 s8=s7-1*30*60 s9=s8-.5*1*30*60 s10=s9 s11=s10+.5*1*30*60 splot=point([(0,s0), (1,s1), (2,s2), (3,s3), (4,s4), (5,s5),(6,s6), (7,s7), (8,s8), (9,s9), (10,s10), (11,s11)]) show(splot)

What are we using here?  s(b)=s(a)+abv(t)dt.s(b)=s(a) + \int^b_a v(t) \, dt.

This is true because velocity is the rate of change of position.  Stated more generally, this is the

Fundamental Theorem of Calculus (FTC):  If ff is continuaous on the interval [a,b][a,b] and f(t)=F(t)f(t)=F'(t), then

abf(t)dt=F(b)F(a).\int^b_a f(t) \, dt = F(b)-F(a).

 

Notes: 

1.  This theorem establishes the relationship between the two operations we developed in this course: finding derivatives (slopes, rates of change) and finding integrals (areas, cummulative change).

2.  Before computers, this theorem provided a practical way of calculating integrals in many cases.


Example:  Find the area bounded by the curves y=3x2y=3x^2, y=0y=0, and x=3.x=3. 


boundary1=plot(3*x^2,(0,3.2)) boundary2=line([(0,0),(3,0)]) boundary3=line([(3,0),(3,27)]) show(boundary1+boundary2+boundary3)

This bounded area is 03x2dx.\int^3_0 x^2 \, dx.

Can you think of a function F(x)F(x) such that F(x)=3x2?F'(x) =3 x^2? 

If so, then FTC says 033x2dx=F(3)F(0).\int^3_0 3x^2 \, dx = F(3)-F(0).

Recall the definition of the integral as a limit of Riemann sums: abf(t)dt=limni=1nf(ti)Δt.\int^b_a f(t) \, dt = \lim_{n\rightarrow \infty} \sum^n_{i=1} f(t_i) \Delta t.

Explain each symbol in the sum.

Substituting ban\frac{b-a}{n} for Δt\Delta t yields abf(t)dt=limnbani=1nf(ti).\int^b_a f(t)\, dt = \lim_{n\rightarrow \infty} \frac{b-a}{n}\sum^n_{i=1}f(t_i).


Dividing both sides by bab-a yields 1baabf(t)dt=limn1ni=1nf(ti).\frac{1}{b-a} \int^b_a f(t) \, dt = \lim_{n\rightarrow \infty} \frac{1}{n}\sum^n_{i=1}f(t_i).

If we ignore the limit, the expression on the right-hand side looks like an average. 

Explain what is being "averaged."

What happens as nn increases without bound?

The expression on the left-hand side is defined to be the average value of ff on the interval [a,b][a,b].  Now finish the Section 5.3 concepts review.

Extra Question:  In the bicycle scenario, what happens if we start at position x(0)=500x(0)=500 instead of x(0)=0x(0)=0

c=500 t=var('t') s0=c s1=c+.5*1*30*60 s2=s1+1*30*60 s3=s2+.5*1*30*60 s4=s3 s5=s4 s6=s5-.5*1*30*60 s7=s6-1*30*60 s8=s7-1*30*60 s9=s8-.5*1*30*60 s10=s9 s11=s10+.5*1*30*60 splot=point([(0,s0), (1,s1), (2,s2), (3,s3), (4,s4), (5,s5),(6,s6), (7,s7), (8,s8), (9,s9), (10,s10), (11,s11)]) show(splot)