Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

All published worksheets from http://sagenb.org

Views: 168742
Image: ubuntu2004
\newtheorem{lemma}{Lemma} \renewenvironment{proof}{{\bfseries Proof}}{\quad\square} \begin{lemma} For all n \in \[\mathbb{N}\], \newline \[\Gamma(\frac{1}{2} - n) = \frac{(-2)^n\sqrt{\pi}}{(2n -1)!!}\] \newline \end{lemma} \begin{proof} Base case: Let n = 1, then \newline \[\Gamma(\frac{1}{2} - 1)=\Gamma(-\frac{1}{2}) = -2\sqrt{\pi} = \frac{(-2)\sqrt{\pi}}{1!!}\]\newline Assume that for some arbitrary integer m \in \[\mathbb{N}\], \newline \[\Gamma(\frac{1}{2} - m) = \frac{(-2)^m \sqrt{\pi}}{(2m -1)!!}\] \newline Note that the Gamma function has a well known functional equation that assists in the definition of the gamma function as an extension of the factorials: \[\Gamma(1 + x) = x\Gamma(x), \qquad x \in \[\mathbb{R} - \{0, -1, -2, ...\}\]\]\newline rearrangement of this equations shows that \newline \[\Gamma(x) = \frac{\Gamma(1 + x)}{x}\] \newline Thus, \newline \begin{align*} \[\Gamma(\frac{1}{2} - (m + 1)) = \Gamma(-(m + \frac{1}{2})) &= \frac{\Gamma(1 - (m + \frac{1}{2}))}{-(m + \frac{1}{2})}\\ &= \frac{(-2)\Gamma(\frac{1}{2} - m)}{2m + 1}\\ &= \frac{(-2)\Big(\frac{(-2)^m \sqrt{\pi}}{(2m -1)!!}\Big)}{2m + 1}\\ &= \frac{(-2)^{m+1}\sqrt{\pi}}{(2m + 1)!!} \end{align*} \newline , as desired. \end{proof}
\newtheorem{result}{Result} \renewenvironment{proof}{{\bfseries Proof}}{\quad\square} \begin{result} For all n \in \[\mathbb{N}\],\newline\newline \begin{equation} \[H(n + \frac{1}{2}) = \frac{(2n - 1)!!}{2^{n+1} \sqrt{\pi}} \bigg(\pi + 4\sum_{k=1}^n \frac{(-1)^{k+1}}{2k-1}\bigg)\] \end{equation} \end{result} \begin{proof} Set n = 1, then we can observe that \newline \[H(\frac{3}{2}) = H(1 + \frac{1}{2}) = \frac{(1)!!}{2^{2}\sqrt{\pi}}\left(\pi + 4(\frac{1}{1})\right) = \frac{\pi + 4}{4\sqrt{\pi}}\] Assume that for some positive integer r, \newline \[H(r + \frac{1}{2}) = \frac{(2r - 1)!!}{2^{n+1}\sqrt{\pi}} \bigg(\pi + 4\sum_{k=1}^r \frac{(-1)^{k+1}}{2k - 1}\bigg)\] Similar to the functional equation for the Gamma function, Hadamard's Gamma function has a recurrence relation \begin{equation} H(1 + x) = xH(x) + \frac{1}{\Gamma(1 - x)}, \qquad x \in \[\mathbb{R} \qquad \qquad (*)\] \end{equation} So we can recognize that \begin{align*} \[H\bigg((r+1) + \frac{1}{2}\bigg) = H\bigg(1+(r + \frac{1}{2})\bigg) &= (r + \frac{1}{2})H(r + \frac{1}{2}) + \frac{1}{\Gamma(1 - (r + \frac{1}{2}))} \\ &= \frac{2r + 1}{2}\bigg[\frac{(2r - 1)!!}{2^{n+1}\sqrt{\pi}} \bigg(\pi + 4\sum_{k=1}^r \frac{(-1)^{k+1}}{2k - 1}\bigg)\bigg] + \frac{1}{\frac{(-2)^r\sqrt{\pi}}{(2r -1)!!}}\\ &= \frac{(2r +1)!!}{2^{r+2}\sqrt{\pi}}\bigg(\pi + 4\sum_{k=1}^r \frac{(-1)^{k+1}}{2k -1}\bigg) + \frac{4(-1)^r(2r-1)!!}{2^{r+2}\sqrt{\pi}}\\ &=\frac{(2r+1)!!}{2^{r+2}\sqrt{\pi}}\bigg[\pi + 4\sum_{k=1}^{r+1} \frac{(-1)^{k+1}}{2k-1}\bigg] \end{align*} , as desired. Thus, by the Principle of Mathematical Induction, \[H(n + \frac{1}{2}) = \frac{(2n - 1)!!}{2^{n+1} \sqrt{\pi}} \bigg(\pi + 4\sum_{k=1}^n \frac{(-1)^{k+1}}{2k-1}\bigg), \qquad n \in \[\mathbb{N}\]\] \end{proof}
\newtheorem{result}{Result A.} \renewenvironment{proof}{{\bfseries Proof}}{\square} \begin{result} For all integers n\ge0,\) \[H(-n) = \frac{(-1)^n}{2 \cdot n!}\bigg[\sum_{k=1}^{\lfloor\frac{n}{2}\rfloor} \frac{1}{k} - \sum_{k=1}^{\lceil\frac{n}{2}\rceil} \frac{2}{2k-1} + 2ln(2)\bigg]\] \end{result} \begin{proof} Let n = 0, then \newline \[H(0) &= \frac{(-1)^0}{2 \cdot 0!}\bigg[\sum_{k=1}^0 \frac{1}{k} - \sum_{k=1}^0 \frac{2}{2k-1} + 2ln(2)\bigg] = \frac{1}{2}\bigg(2ln(2)\bigg) = ln(2)\] \newline Assume that for some positive integer m, \newline \[H(-m) = \frac{(-1)^m}{2 \cdot m!}\bigg[\sum_{k=1}^{\lfloor\frac{m}{2}\rfloor} \frac{1}{k} - \sum_{k=1}^{\lceil\frac{m}{2}\rceil} \frac{2}{2k-1} + 2ln(2)\bigg]\]\newline Note that if m is even, then the indices of the summations for \(H(-(m+1))\) become \newline \begin{align*} \sum_{k=1}^{\lfloor\frac{m+1}{2}\rfloor} \frac{1}{k} - \sum_{k=1}^{\lceil\frac{m+1}{2}\rceil} \frac{2}{2k-1} &= \sum_{k=1}^{\frac{m}{2}} \frac{1}{k} - \sum_{k=1}^{\frac{m+2}{2}} \frac{2}{2k-1} \\ &= \sum_{k=1}^{\lfloor\frac{m}{2}\rfloor} \frac{1}{k} - \sum_{k=1}^{\lceil\frac{m}{2}\rceil} \frac{2}{2k-1} - \frac{2}{m+1} \end{align*} Furthermore, if m is odd, then the indices of the summations for \(H(-(m + 1))\) become \newline \begin{align*} \sum_{k=1}^{\lfloor\frac{m+1}{2}\rfloor} \frac{1}{k} - \sum_{k=1}^{\lceil\frac{m+1}{2}\rceil} \frac{2}{2k-1} &= \sum_{k=1}^{\frac{m+1}{2}} \frac{1}{k} - \sum_{k=1}^{\frac{m+1}{2}} \frac{2}{2k-1} \\ &= \sum_{k=1}^{\lfloor\frac{m}{2}\rfloor} \frac{1}{k} - \sum_{k=1}^{\lceil\frac{m}{2}\rceil} \frac{2}{2k-1} + \frac{2}{m+1} \end{align*} Now, from rearrangement of the recurrence relation \((*)\) for Hadamard's Gamma function, we find that \newline \[H(x) = \frac{1}{x}\bigg(H(1+x) - \frac{1}{\Gamma(1-x)}\bigg)\] So, \begin{align*} H(-(m+1)) &= \frac{1}{-(m+1)}\bigg(H(1-(m+1)) - \frac{1}{\Gamma(1+(m+1))}\bigg)\\ &= \frac{1}{-(m+1)}\bigg(H(-m) - \frac{1}{(m+1)!}\bigg)\\ &= \frac{1}{-(m+1)}\left(\frac{(-1)^m}{2 \cdot m!}\bigg[\sum_{k=1}^{\lfloor\frac{m}{2}\rfloor} \frac{1}{k} - \sum_{k=1}^{\lceil\frac{m}{2}\rceil} \frac{2}{2k-1} + 2ln(2)\bigg] - \frac{1}{(m+1)!}\right)\\ &= \frac{(-1)^{m+1}(m+1)}{2(m+1) \cdot (m+1)!}\bigg[\sum_{k=1}^{\lfloor\frac{m}{2}\rfloor} \frac{1}{k} - \sum_{k=1}^{\lceil\frac{m}{2}\rceil} \frac{2}{2k-1} + 2ln(2)\bigg] + \frac{2}{2(m+1)\cdot (m+1)!}\\ &= \frac{(-1)^{m+1}}{2 \cdot (m+1)!}\bigg[\sum_{k=1}^{\lfloor\frac{m}{2}\rfloor} \frac{1}{k} - \sum_{k=1}^{\lceil\frac{m}{2}\rceil} \frac{2}{2k-1} + \frac{2}{(-1)^{m+1}(m+1)} + 2ln(2)\bigg] \end{align*}
\renewenvironment{proof}{{\bfseries Proof}}{\square} We can observe that when m is even, \newline \[\frac{2}{(-1)^{m+1}(m+1)} = -\frac{2}{m+1}\] and when m is odd, \[\frac{2}{(-1)^{m+1}(m+1)} = \frac{2}{m+1}\] Therefore, \[H(-(m+1)) = \frac{(-1)^{m+1}}{2 \cdot (m+1)!}\bigg[\sum_{k=1}^{\lfloor\frac{m+1}{2}\rfloor} \frac{1}{k} - \sum_{k=1}^{\lceil\frac{m+1}{2}\rceil} \frac{2}{2k-1} + 2ln(2)\bigg]\] and by the Principle of Mathematical Induction, \[H(-n) = \frac{(-1)^n}{2 \cdot n!}\bigg[\sum_{k=1}^{\lfloor\frac{n}{2}\rfloor} \frac{1}{k} - \sum_{k=1}^{\lceil\frac{n}{2}\rceil} \frac{2}{2k-1} + 2ln(2)\bigg]\] for all integers n\(\ge\)0. \end{proof}
\newtheorem{resultA}{Result B.} \renewenvironment{proof}{{\bfseries Proof}}{\quad\square} \begin{resultA} For all integers n \(\ge\) 0, \newline \[H(-n) = \frac{(-1)^n}{n!}\bigg[ln(2) - \sum_{k=1}^n \frac{(-1)^{k-1}}{k}\bigg] \end{resultA} \begin{proof} Let n = 0, then \[H(0) = \frac{1}{0!}\bigg[ln(2) - 0\bigg] = ln(2).\] Assume that for all m \in \[\mathbb{N} \cup \{0\}\], \[H(-m) = \frac{(-1)^m}{m!}\bigg[ln(2) - \sum_{k=1}^m \frac{(-1)^{k-1}}{k}\bigg]\] Then we have from the recursive relationship of \(H(x)\), that \begin{align} H(-(m+1)) &= \frac{1}{-(m+1)}\bigg[H(1-(m+1)) - \frac{1}{\Gamma(1+(m+1))}\bigg]\\ &= \frac{1}{-(m+1)}\bigg[H(-m) - \frac{1}{(m+1)!}\bigg]\\ &= \frac{(-1)^{m+1}}{(m+1)!}\bigg[ln(2) - \sum_{k=1}^m \frac{(-1)^{k-1}}{k}\bigg] + \frac{1}{(m+1)(m+1)!}\\ &= \frac{(-1)^{m+1}}{(m+1)!}\bigg[ln(2) - \sum_{k=1}^m \frac{(-1)^{k-1}}{k} + \frac{(-1)^{m+1}}{m+1}\bigg]\\ &= \frac{(-1)^{m+1}}{(m+1)!}\bigg[ln(2) - \sum_{k=1}^{m+1} \frac{(-1)^{k-1}}{k}\bigg] \end{align} ,as desired.\newline Therefore, by the Principle of Mathematical Induction,\newline \[H(-n) = \frac{(-1)^n}{n!}\bigg[ln(2) - \sum_{k=1}^n \frac{(-1)^{k-1}}{k}\bigg]\] for all integers n\(\ge\)0. \end{proof} \newline We are able to conclude, from direct substitution, a corollary.\newline \newtheorem{corollary}{Corollary} \begin{corollary} For all \(n\in\(\mathbb{N},\)\) \[H(-2n) = \frac{1}{(2n)!}\bigg[ln(2) - 2\sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k}\bigg].\] \end{corollary} \newline
For this result, we will note on the characteristic of the Gamma function's simple poles and its residue at z=-n, such that \(n\ge0\). We have \[Res_{z=-n} \Gamma(z) = \frac{-1^n}{n!}.\] From the Laurent expansion of \(\Gamma(z)\) \[\Gamma(z)=\frac{c_{-1}}{z-(-n)} + c_0 + {c_1}{z-(-n)} + \cdot\cdot\cdot\] and through much manipulation, we are able to derive a Laurent expansion for the Psi function \[\Psi(z)=-\frac{1}{z-(-n)}+c_0+\cdot \cdot \cdot\] and the first term reveals that the residue of \(\Psi(z)\) at \(z=-n\) is -1. Now, on to our main result.
\newtheorem{resultC}{Result C} \renewenvironment{proof}{{\bfseries Proof}}{\quad\square} \begin{resultC} For all n \in \(\mathbb{N}\), \[H'(n) = (n-1)!\bigg[\sum_{k=1}^{\lfloor\frac{n-1}{2}\rfloor} \frac{1}{k} + ln2-\gamma\bigg] \end{resultC} \begin{proof} For \(n=1\), we have that \[H'(1)=(0)!\bigg[0+ln(2)-\gamma \bigg] = ln(2) - \gamma\] \newline Assume that for some arbitrary integer m, \[H'(m) = (m-1)!\bigg[\sum_{k=1}^{\lfloor\frac{m-1}{2}\rfloor} \frac{1}{k} + ln2-\gamma\bigg].\] \newline From the derivative of the recurrence relation of H(x) we have that \[H'(x+1)=H(x)+xH'(x)+\frac{\Psi(1-x)}{\Gamma(1-x)}, \qquad x\in\mathbb{R}\] Thus, \begin{align} H'(m+1) &= H(m)+mH'(m)+\frac{\Psi(1-m)}{\Gamma(1-m)}\\ &=(m-1)! + m!\bigg[\sum_{k=1}^{\lfloor\frac{m-1}{2}\rfloor} \frac{1}{k} + ln2-\gamma\bigg] + (-1)^{m} (m-1)!\\ &=(m-1)!\bigg(1+(-1)^m\bigg)+m!\bigg[\sum_{k=1}^{\lfloor\frac{m-1}{2}\rfloor} \frac{1}{k} + ln2-\gamma\bigg]\\ &=m!\bigg[\sum_{k=1}^{\lfloor\frac{m}{2}\rfloor} \frac{1}{k} + ln2-\gamma\bigg] \end{align} Recall when m is an odd integer, from equation (3), the term \((m-1)!\bigg(1+(-1)^m\bigg) = 0\) and since \[m!\sum_{k=1}^{\lfloor\frac{m}{2}\rfloor} \frac{1}{k} = m!\sum_{k=1}^{\frac{m-1}{2}} \frac{1}{k} = m!\sum_{k=1}^{\lfloor\frac{m-1}{2}\rfloor} \frac{1}{k}\] this result is necessary to change indices from one summation to the other.\newline Likewise, when m is an even integer, we have that \((m-1)!\bigg(1+(-1)^m\bigg) = 2(m-1)!.\)\newline We can notice that \[m!\sum_{k=1}^{\lfloor\frac{m}{2}\rfloor} \frac{1}{k} = m!\sum_{k=1}^{\frac{m}{2}} \frac{1}{k} = m!\sum_{k=1}^{\lfloor\frac{m-1}{2}\rfloor} \frac{1}{k} + \frac{2m!}{m} = m!\sum_{k=1}^{\lfloor\frac{m-1}{2}\rfloor} \frac{1}{k} + 2(m-1)!\] and once again, our result is the extra term needed to change indices.\newline\newline Thus, by the Principle of Mathematical Induction, \[H'(n) = (n-1)!\bigg[\sum_{k=1}^{\lfloor\frac{n-1}{2}\rfloor} \frac{1}{k} + ln2-\gamma\bigg], \qquad n\in\mathbb{N}\] \end{proof}