Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

All published worksheets from http://sagenb.org

Views: 168698
Image: ubuntu2004

Definición de variables

t = var('t') y = function('y', t)

Boyce & DiPrima 7th edition. Sec. 3.1, 

4)  2y3y+y=02y''-3y'+y=0

desolve(2*diff(y,t,2)-3*diff(y,t)+y == 0,y)
\newcommand{\Bold}[1]{\mathbf{#1}}k_{1} e^{t} + k_{2} e^{\left(\frac{1}{2} \, t\right)}

12) y+3yy''+3y', y(0)=2y(0)=-2, y(0)=3y'(0)=3

desolve(diff(y,t,2)+3*diff(y,t)== 0,y,[0,-2,3])
\newcommand{\Bold}[1]{\mathbf{#1}}-e^{\left(-3 \, t\right)} - 1
plot(-e^(-3*t) -1,(-1,2))

19) yy=0y''-y=0, y(0)=54y(0)=\frac{5}{4}, y(0)=34y'(0)=-\frac{3}{4}

desolve(diff(y,t,2)-y== 0,y,[0,5/4,-3/4])
\newcommand{\Bold}[1]{\mathbf{#1}}e^{\left(-t\right)} + \frac{1}{4} \, e^{t}

El mínimo se encuentra tomando dydt=0\frac{dy}{dt}=0

diff(e^(-t) + 1/4*e^t,t)
\newcommand{\Bold}[1]{\mathbf{#1}}-e^{\left(-t\right)} + \frac{1}{4} \, e^{t}

y eligiendo la raíz real de

solve(-e^(-t) + 1/4*e^t==0, t)
\newcommand{\Bold}[1]{\mathbf{#1}}\left[t = i \, \pi + \log\left(2\right), t = \log\left(2\right)\right]

Equivalentemente, podemos usar el comando numérico correspondiente:

find_root(-e^(-t) + 1/4*e^t==0, 0,2)
\newcommand{\Bold}[1]{\mathbf{#1}}0.69314718056
plot(e^(-t) + 1/4*e^t,(0,2))

Sec. 3.2, 

2)  y1=costy_1=\cos t, y2=sinty_2=\sin t

Para calcular el Wronskiano, definimos la siguiente matriz:

A = Matrix([[cos(t),sin(t)],[diff(cos(t),t),diff(sin(t),t)]]) A
\newcommand{\Bold}[1]{\mathbf{#1}}\left(cos(t)sin(t)sin(t)cos(t)\begin{array}{rr} \cos\left(t\right) & \sin\left(t\right) \\ -\sin\left(t\right) & \cos\left(t\right) \end{array}\right)

Así, el Wronskiano correspondiente a las soluciones es:

(A.determinant()).full_simplify()
\newcommand{\Bold}[1]{\mathbf{#1}}1

4)  y1=xy_1=x, y2=xexy_2=x e^x

B = Matrix([[x,x*e^(x)],[diff(x,x),diff(x*e^(x),x)]]) B
\newcommand{\Bold}[1]{\mathbf{#1}}\left(xxex1xex+ex\begin{array}{rr} x & x e^{x} \\ 1 & x e^{x} + e^{x} \end{array}\right)
(B.determinant()).full_simplify()
\newcommand{\Bold}[1]{\mathbf{#1}}x^{2} e^{x}

6)  y1=cos2θy_1=\cos^2 \theta, y2=1+cos2θy_2=1+\cos 2\theta

C = Matrix([[(cos(t))^2,1+cos(2*t)],[diff((cos(t))^2,t),diff(1+cos(2*t),t)]]) C
\newcommand{\Bold}[1]{\mathbf{#1}}\left(cos(t)2cos(2t)+12sin(t)cos(t)2sin(2t)\begin{array}{rr} \cos\left(t\right)^{2} & \cos\left(2 \, t\right) + 1 \\ -2 \, \sin\left(t\right) \cos\left(t\right) & -2 \, \sin\left(2 \, t\right) \end{array}\right)
(C.determinant()).full_simplify()
\newcommand{\Bold}[1]{\mathbf{#1}}0

24) y2y+y=0y''-2y'+y=0, y1=ety_1=e^t, y2=tety_2=te^t

var('c1,c2') # definición de las constantes de integración c1 y c2 ed= lambda u: diff(u, t,2) -2*diff(u,t)+u # definición del operador de la EDO ed(c1*e^(t)+c2*t*e^t).expand()
\newcommand{\Bold}[1]{\mathbf{#1}}0
D = Matrix([[e^(t),t*e^t],[diff(e^t,t),diff(t*e^t,t)]]) D
\newcommand{\Bold}[1]{\mathbf{#1}}\left(ettetettet+et\begin{array}{rr} e^{t} & t e^{t} \\ e^{t} & t e^{t} + e^{t} \end{array}\right)
(D.determinant()).full_simplify()
\newcommand{\Bold}[1]{\mathbf{#1}}e^{\left(2 \, t\right)}

26) (1xcotx)yxy+y=0(1-x\cot x)y''-xy'+y=0, y1=xy_1=x, y2=sinxy_2=\sin x

ed2= lambda u: (1-x*cot(x))*diff(u, x,2) -x*diff(u,x)+u # definición del operador de la EDO (ed2(c1*x+c2*sin(x)).expand()).simplify_full()
\newcommand{\Bold}[1]{\mathbf{#1}}0
E = Matrix([[x,sin(x)],[diff(x,x),diff(sin(x),x)]]) E
\newcommand{\Bold}[1]{\mathbf{#1}}\left(xsin(x)1cos(x)\begin{array}{rr} x & \sin\left(x\right) \\ 1 & \cos\left(x\right) \end{array}\right)
(E.determinant()).full_simplify()
\newcommand{\Bold}[1]{\mathbf{#1}}x \cos\left(x\right) - \sin\left(x\right)

Sec. 3.4, 

14)  9y+9y4y=09y''+9y'-4y=0

desolve(9*diff(y,t,2)+9*diff(y,t)-4*y == 0,y)
\newcommand{\Bold}[1]{\mathbf{#1}}k_{1} e^{\left(\frac{1}{3} \, t\right)} + k_{2} e^{\left(-\frac{4}{3} \, t\right)}

20) y+y=0y''+y=0, y(π3)=2y(\frac{\pi}{3})=2, y(π3)=4y'(\frac{\pi}{3})=-4

desolve(diff(y,t,2)+y== 0,y,[pi/3,2,-4])
\newcommand{\Bold}[1]{\mathbf{#1}}{\left(\sqrt{3} - 2\right)} \sin\left(t\right) + {\left(2 \, \sqrt{3} + 1\right)} \cos\left(t\right)
plot((sqrt(3) - 2)*sin(t) + (2*sqrt(3) + 1)*cos(t),(-2,10))

23) 3uu+2u=03u''-u'+2u=0, u(0)=2u(0)=2, u(0)=0u'(0)=0

desolve(3*diff(y,t,2)-diff(y,t)+2*y== 0,y,[0,2,0]).expand()
\newcommand{\Bold}[1]{\mathbf{#1}}-\frac{2}{23} \, \sqrt{23} e^{\left(\frac{1}{6} \, t\right)} \sin\left(\frac{1}{6} \, \sqrt{23} t\right) + 2 \, e^{\left(\frac{1}{6} \, t\right)} \cos\left(\frac{1}{6} \, \sqrt{23} t\right)
plot(-2/23*(sqrt(23)*sin(1/6*sqrt(23)*t) - 23*cos(1/6*sqrt(23)*t))*e^(1/6*t),(-2,15))

Para encontrar el primer punto en que u=10|u|=10, recurrimos a los métodos numéricos:

find_root((-2/23*(sqrt(23)*sin(1/6*sqrt(23)*t) - 23*cos(1/6*sqrt(23)*t))*e^(1/6*t))^2-100, 0,12)
\newcommand{\Bold}[1]{\mathbf{#1}}10.7597705544

Sec. 3.5

4) 4y+12y+9y=04y''+12y'+9y=0

desolve(4*diff(y,t,2)+12*diff(y,t)+9*y == 0,y)
\newcommand{\Bold}[1]{\mathbf{#1}}{\left(k_{2} t + k_{1}\right)} e^{\left(-\frac{3}{2} \, t\right)}

12) y6y+9y=0y''-6y'+9y=0, y(0)=0y(0)=0, y(0)=2y'(0)=2

desolve(diff(y,t,2)-6*diff(y,t)+9*y== 0,y,[0,0,2])
\newcommand{\Bold}[1]{\mathbf{#1}}2 \, t e^{\left(3 \, t\right)}
plot(2*t*e^(3*t),(t,-2,.35))

18) 9y+12y+4y=09y''+12y'+4y=0, y(0)=a>0y(0)=a>0, y(0)=1y'(0)=-1

a=var('a') desolve(9*diff(y,t,2)+12*diff(y,t)+4*y== 0,y,[0,a,-1])
\newcommand{\Bold}[1]{\mathbf{#1}}\frac{1}{3} \, {\left({\left(2 \, a - 3\right)} t + 3 \, a\right)} e^{\left(-\frac{2}{3} \, t\right)}

Esta función simepre es positiva a menos que  el factor (2a3)(2a-3) sea negativo. Así, a=32a=\frac{3}{2} es el valor crítico.

Zill 7th Ed. Sec. 4.3

51) y+6y+y34y=0y'''+6y''+y'-34y=0

El polinomio característico es r3+6r2+r34=0r^3+6r^2+r-34=0, cuyas raíces son

var('r') solve(r^3+6*r^2+r-34==0, r)
\newcommand{\Bold}[1]{\mathbf{#1}}\left[r = \left(-i - 4\right), r = \left(i - 4\right), r = 2\right]

De modo que la solución general es y(t)=c1e2t+c2e4tcost+c3e4tsinty(t)=c_1 e^{2t}+c_2 e^{-4t}\cos t+c_3 e^{-4t}\sin t

52) y+y=0y''''+y=0

El polinomio característico es r4+1=(r2+1)22r2=(r22r+1)(r2+2r+1)=0r^4+1=(r^2+1)^2-2r^2=(r^2-\sqrt{2}r+1)(r^2+\sqrt{2}r+1)=0, cuyas raíces son

solve(r^2-sqrt(2)*r+1==0, r)
\newcommand{\Bold}[1]{\mathbf{#1}}\left[r = -\left(\frac{1}{2} i - \frac{1}{2}\right) \, \sqrt{2}, r = \left(\frac{1}{2} i + \frac{1}{2}\right) \, \sqrt{2}\right]
solve(r^2+sqrt(2)*r+1==0, r)
\newcommand{\Bold}[1]{\mathbf{#1}}\left[r = -\left(\frac{1}{2} i + \frac{1}{2}\right) \, \sqrt{2}, r = \left(\frac{1}{2} i - \frac{1}{2}\right) \, \sqrt{2}\right]

De modo que la solución general es y(t)=c1et/2cost2+c2et/2sint2+c3et/2cost2+c4et/2sint2y(t)=c_1 e^{t/\sqrt{2}}\cos{\frac{t}{\sqrt{2}}}+c_2 e^{t/\sqrt{2}}\sin{\frac{t}{\sqrt{2}}}+c_3 e^{-t/\sqrt{2}}\cos{\frac{t}{\sqrt{2}}}+c_4 e^{-t/\sqrt{2}}\sin{\frac{t}{\sqrt{2}}}

Puntos Extra:

Zill 7th Ed. Sec. 4.3

18) y+3y4y12y=0y'''+3y''-4y'-12y=0

El polinomio característico es r3+3r24r12=0r^3+3r^2-4r-12=0, cuyas raíces son

solve(r^3+3*r^2-4*r-12==0, r)
\newcommand{\Bold}[1]{\mathbf{#1}}\left[r = \left(-2\right), r = 2, r = \left(-3\right)\right]

De modo que la solución general es y(t)=c1e2t+c2e2t+c3e3ty(t)=c_1 e^{2t}+c_2 e^{-2t}+c_3 e^{-3t}

28) 2d5xds57d4xds4+12d3xds3+8d2xds2=02\frac{d^5x}{ds^5}-7\frac{d^4x}{ds^4}+12\frac{d^3x}{ds^3}+8\frac{d^2x}{ds^2}=0

El polinomio característico es 2r57r4+12r3+8r2=02r^5-7r^4+12r^3+8r^2=0, cuyas raíces son

solve(2*r^5-7*r^4+12*r^3+8*r^2,r)
\newcommand{\Bold}[1]{\mathbf{#1}}\left[r = \left(-2 i + 2\right), r = \left(2 i + 2\right), r = \left(-\frac{1}{2}\right), r = 0\right]

Aquí la raíz r=0r=0 está degenerada (aparece dos veces), de modo que la solución general es: x(s)=c1+c2s+c3es/2+c4e2scos2s+c5e2ssin2sx(s)=c_1+c_2 s+c_3 e^{-s/2}+c_4 e^{2s}\cos{2s}+c_5 e^{2s}\sin{2s}.

28) y+12y+36y=0y'''+12y''+36y'=0

El polinomio característico es r3+12r2+36r=0r^3+12r^2+36r=0, cuyas raíces son

solve(r^3+12*r^2+36*r,r)
\newcommand{\Bold}[1]{\mathbf{#1}}\left[r = \left(-6\right), r = 0\right]

con raíz doble r=-6, de modo que y(t)=c1+c2e6t+c3te6ty(t)=c_1+c_2e^{-6t}+c_3 t e^{-6t} . Aplicando las condiciones iniciales y(0)=0y(0)=0, y(0)=1y'(0)=1 y y(0)=7y''(0)=7 en la solución general y sus derivadas

var('c1,c2,c3') f1(t)= c1+c2*e^(-6*t)+c3*t*e^(-6*t) f1p=diff(f1,t) f1pp=diff(f1,t,2)

arroja el siguiente sistema de ecuaciones:

f1(0)==0,f1p(0)==1,f1pp(0)==-7
\newcommand{\Bold}[1]{\mathbf{#1}}\left(c_{1} + c_{2} = 0, -6 \, c_{2} + c_{3} = 1, 36 \, c_{2} - 12 \, c_{3} = \left(-7\right)\right)
solve((f1(0)==0,f1p(0)==1,f1pp(0)==-7),(c1,c2,c3))
\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left[c_{1} = \left(\frac{5}{36}\right), c_{2} = \left(-\frac{5}{36}\right), c_{3} = \left(\frac{1}{6}\right)\right]\right]

Así, y(t)=y(t)=536536e6t+16te6ty(t)=y(t)=\frac{5}{36}-\frac{5}{36}e^{-6t}+\frac{1}{6}t e^{-6t} es la solución al problema.

50) si m1=12m_1=-\frac{1}{2} y m2=3+im_2=3+i son raíces de un polinomio característico con coeficientes reales, necesariamente, la raíz restante debe ser el complejo conjugado de la raíz compleja m2m_2. Así m3=3im_3=3-i y por lo tanto, dicho polinomio es

var('m') ((m+1/2)*(m-3-i)*(m-3+i)).expand()
\newcommand{\Bold}[1]{\mathbf{#1}}m^{3} - \frac{11}{2} \, m^{2} + 7 \, m + 5

de modo que la EDO lineal homogénea correspondiente es y112y+7y+5y=0y'''-\frac{11}{2}y''+7y'+5y=0