Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

All published worksheets from http://sagenb.org

Views: 168728
Image: ubuntu2004
#Polinomok: megalkotjuk a polinomgyűrűt: R.<x> = PolynomialRing(QQ)
#utána dolgozunk benne (a fent megadott x jelöli a határozatlant) f = x^2 + 1
g = x^2 - 1
f*g
x^4 - 1
factor(_)
(x - 1) * (x + 1) * (x^2 + 1)
#Akár ideálokat is létrehozhatunk I = f * R
I
Principal ideal (x^2 + 1) of Univariate Polynomial Ring in x over Rational Field
x^3+x in I
True
K.<y> = R.quotient_by_principal_ideal(f)
K
Univariate Quotient Polynomial Ring in y over Rational Field with modulus x^2 + 1
y^2
-1
# Egy másik példa polinomgyűrűre R.<x> = PolynomialRing(GF(3)) R
Univariate Polynomial Ring in x over Finite Field of size 3
K.<t> = R.quotient_ring(x^2-2) K
Univariate Quotient Polynomial Ring in t over Finite Field of size 3 with modulus x^2 + 1
K.is_field()
True
K.is_finite()
True
K2.<t> = GF(9) K2.multiplication_table()
* a b c d e f g h i +------------------ a| a a a a a a a a a b| a c d e f g h i b c| a d e f g h i b c d| a e f g h i b c d e| a f g h i b c d e f| a g h i b c d e f g| a h i b c d e f g h| a i b c d e f g h i| a b c d e f g h i
K.<y> = NumberField(x^2+5) K
Number Field in y with defining polynomial x^2 + 5
R = ZZ[y]
I = (6)* R I
Fractional ideal (6)
I.is_principal()
True
I.factor()
(Fractional ideal (2, y0 + 1))^2 * (Fractional ideal (3, y0 + 1)) * (Fractional ideal (3, y0 + 2))
#Vektorok, mátrixok M = Matrix([[1,2],[3,4],[5,6],[7,8]]) v = vector([-1, 7]) (M, v, M*v)
( [1 2] [3 4] [5 6] [7 8], (-1, 7), (13, 25, 37, 49) )
Matrix(2,2,[1, 2, 5, 6]).inverse()
[-3/2 1/2] [ 5/4 -1/4]
Matrix(2, range(10, 14))
[10 11] [12 13]
M = Matrix(2, 2, [a, b, c, d])
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "_sage_input_68.py", line 10, in <module> exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("TSA9IE1hdHJpeCgyLCAyLCBbYSwgYiwgYywgZF0p"),globals())+"\\n"); execfile(os.path.abspath("___code___.py"))' + '\n', '', 'single') File "", line 1, in <module> File "/tmp/tmpeE84oS/___code___.py", line 3, in <module> exec compile(u'M = Matrix(_sage_const_2 , _sage_const_2 , [a, b, c, d])' + '\n', '', 'single') File "", line 1, in <module> NameError: name 'a' is not defined
M = Matrix(SR, 2, var('a, b, c, d'))
M.inverse()
[-b*c/((b*c/a - d)*a^2) + 1/a b/((b*c/a - d)*a)] [ c/((b*c/a - d)*a) -1/(b*c/a - d)]
M.det()
a*d - b*c
M.charpoly()
x^2 + (-a - d)*x + a*d - b*c
M = Matrix(ZZ, 2, [0, 1, 2, 0]) M
[0 1] [2 0]
M.charpoly()
x^2 - 2
_.factor()
x^2 - 2
hilbert = Matrix(5, 5, [[1/(i+j-1) for i in [1..5]] for j in [1..5]]) hilbert
[ 1 1/2 1/3 1/4 1/5] [1/2 1/3 1/4 1/5 1/6] [1/3 1/4 1/5 1/6 1/7] [1/4 1/5 1/6 1/7 1/8] [1/5 1/6 1/7 1/8 1/9]
#csoportok G = SymmetricGroup(4) G
Symmetric group of order 4! as a permutation group
show(G.cayley_graph())
G.order()
24
G.is_abelian()
False
G.center()
Subgroup of (Symmetric group of order 4! as a permutation group) generated by [()]
G.subgroups()
[Permutation Group with generators [()], Permutation Group with generators [(1,2)(3,4)], Permutation Group with generators [(1,3)(2,4)], Permutation Group with generators [(1,4)(2,3)], Permutation Group with generators [(3,4)], Permutation Group with generators [(2,3)], Permutation Group with generators [(2,4)], Permutation Group with generators [(1,2)], Permutation Group with generators [(1,3)], Permutation Group with generators [(1,4)], Permutation Group with generators [(2,4,3)], Permutation Group with generators [(1,2,3)], Permutation Group with generators [(1,4,2)], Permutation Group with generators [(1,3,4)], Permutation Group with generators [(1,3)(2,4), (1,4)(2,3)], Permutation Group with generators [(3,4), (1,2)(3,4)], Permutation Group with generators [(2,3), (1,4)(2,3)], Permutation Group with generators [(2,4), (1,3)(2,4)], Permutation Group with generators [(1,2)(3,4), (1,3,2,4)], Permutation Group with generators [(1,3)(2,4), (1,4,3,2)], Permutation Group with generators [(1,2,4,3), (1,4)(2,3)], Permutation Group with generators [(3,4), (2,4,3)], Permutation Group with generators [(3,4), (1,3,4)], Permutation Group with generators [(1,2), (1,2,3)], Permutation Group with generators [(1,2), (1,4,2)], Permutation Group with generators [(1,2), (1,3)(2,4), (1,4)(2,3)], Permutation Group with generators [(1,2)(3,4), (1,3)(2,4), (1,4)], Permutation Group with generators [(1,2)(3,4), (1,3), (1,4)(2,3)], Permutation Group with generators [(2,4,3), (1,3)(2,4), (1,4)(2,3)], Permutation Group with generators [(2,4,3), (1,2), (1,3)(2,4), (1,4)(2,3)]]
(1, 2, 3) in G
True
H = G.subgroup([G((1,2,3)), G((1,2))]) H
Subgroup of (Symmetric group of order 4! as a permutation group) generated by [(1,2), (1,2,3)]
H.order()
6
H.is_normal()
False
g = G((1,2)) g
(1,2)
G = DihedralGroup(4); G
Dihedral group of order 8 as a permutation group
for g in G: print([g, order(g)])
[(), 1] [(2,4), 2] [(1,2)(3,4), 2] [(1,2,3,4), 4] [(1,3), 2] [(1,3)(2,4), 2] [(1,4,3,2), 4] [(1,4)(2,3), 2]
#Feladat: keressük meg S4 normálosztóit, illetve D4 konjugáltosztályait.
#Gráfok #éllistával d = {0: [1,4,5], 1: [2,6], 2: [3,7], 3: [4,8], 4: [9], \ 5: [7, 8], 6: [8,9], 7: [9]} G = Graph(d); G
Graph on 10 vertices
G.show()
#Rajzoljuk ki a következő gráfot: csúcsai az {1, 2, 3, 4, 5} kételemű részei, #élek pedig a diszjunkt csúcsok közt mennek.
#Plotok plot(sin(x), (x, -5, 5))
a = animate([circle((i,i), 1-1/(i+1), hue=i/10) for i in srange(0,2,0.2)], xmin=0,ymin=0,xmax=2,ymax=2,figsize=[2,2])
a.show()
var('x') x0 = 0 f = sin(x)*e^(-x) p = plot(f,-1,5, thickness=2) dot = point((x0,f(x=x0)),pointsize=80,rgbcolor=(1,0,0)) @interact def _(order=(1..12)): ft = f.taylor(x,x0,order) pt = plot(ft,-1, 5, color='green', thickness=2) html('$f(x)\;=\;%s$'%latex(f)) html('$\hat{f}(x;%s)\;=\;%s+\mathcal{O}(x^{%s})$'%(x0,latex(ft),order+1)) show(dot + p + pt, ymin = -.5, ymax = 1)
order 
[removed]
[removed]
[removed]
[removed]