Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

All published worksheets from http://sagenb.org

Views: 168742
Image: ubuntu2004

In this worksheet we will evaluate the line integral: CFds\int_C \vec{F} d\vec{s} where F=<x,x+z,z>\vec{F}=<x,x+z,z> and C is the closed curve defined by the intersection of the sphere x2+y2+z2=1x^2+y^2+z^2=1 and the plane x+y=1x+y=1.

We use Stoke's theorem: CFds =Scurl(F)ndS\int_C {\vec Fd\vec s}  = \iint_S{curl(\vec F)\cdot \vec n\,dS} where n\vec n is the unit vector normal to the surface S.

Here:

ParseError: KaTeX parse error: Unknown column alignment: * at position 38: …{\begin{array}{*̲{20}{c}} {\vec … and

C is the intersection of the sphere and the plane. So C is a circle and S is the disk within C. 

So n\vec n is the unit vector normal to the plane x+y=1x+y=1. This means n=1i+1j+0k12+12+02=<12,12,0>\vec n=\frac{1\vec i+1\vec j+0\vec k}{\sqrt{1^2+1^2+0^2}}=<\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0>

(Notice that with this, we have assumed that the n\vec n is pointing into the x0y plane, that is towards the smaller part of the "cut" sphere.)

It follows that:

CFds=S(12+0+0)dS =(12+0+0)SdS=12Area of S\int_C {\vec Fd\vec s}=\iint_S{(\frac{-1}{\sqrt{2}}+0 +0)dS} =(\frac{-1}{\sqrt{2}}+0 +0)\iint_S{dS}=-\frac{1}{\sqrt{2}} \cdot \text{Area of S}

Area of S = Area of the Circle = πr2\pi \cdot r^2

So we need the radius of C. We pick an arbitrary point on the circle, say (1,0,0). We need the center point O of C.

The sphere is centered at (0,0,0). The plane is symmetric with respect to x and y and normal to the plane x0yx0y. So the x- and y-coordinates of O are equal and the z-coordinate of O is 0. O=(12,12,0)O=(\frac{1}{2},\frac{1}{2},0) and r2=12r^2=\frac{1}{2}

CFds =12π12=π42\int_C {\vec Fd\vec s} =\frac{-1}{\sqrt{2}} \cdot \pi \cdot \frac{1}{2}=\frac{-\pi}{4\sqrt{2}}. This means a particle being carried by F\vec F is being negatively rotated through S about n\vec n.

var('x y z') var('t') plane1=implicit_plot3d(x+y==1,(x, -1, 1), (y, -1,1), (z, -1,1),color='blue', opacity=.3) sphere1=implicit_plot3d(x^2+y^2+z^2==1,(x, -1, 1), (y, -1,1), (z, -1,1), color='lightgrey', opacity=.3) circle1a=parametric_plot3d((t,1-t,sqrt(2)*sqrt(t-t^2)),(0,1), color='yellow',thickness=10) circle1b=parametric_plot3d((t,1-t,-sqrt(2)*sqrt(t-t^2)),(0,1), color='pink',thickness=10) n1=arrow((0,0,0),(1/sqrt(2),1/sqrt(2),0)) show(plane1+sphere1+circle1a+circle1b+n1,figsize=5)
F=plot_vector_field3d((x,x+z,z), (x,0,1), (y,0,1), (z,-1/sqrt(2),1/sqrt(2)),plot_points=[5,5,7]) plane1a=implicit_plot3d(x+y==1,(x, -1, 1), (y, -1,1), (z, -1/sqrt(2),1/sqrt(2)),color='white') show(F+plane1a+circle1a+circle1b+n1)

Thoughts:

If we spin the 3d plot, we can see that F\vec F has rotation through S about n\vec{n}. (I would like to be able to draw only the vectors of F on the disk itself to make this clearer.)

If the plane is x+z=1, then the CFds=S(12+0+12)dS =S0dS=0\int_C {\vec Fd\vec s}=\iint_S{(\frac{-1}{\sqrt{2}}+0 +\frac{1}{\sqrt{2}})dS} =\iint_S{0\,dS}=0 so a particle being carried by the vector field F is not being rotated through this S about this n\vec{n}.

var('x y z'); var('t') plane2=implicit_plot3d(x+z==1,(x, -1, 1), (y, -1,1), (z, -1,1),color='blue', opacity=.3) circle2a=parametric_plot3d((t,sqrt(2)*sqrt(t-t^2),1-t),(0,1), color='red',thickness=10) circle2b=parametric_plot3d((t,-sqrt(2)*sqrt(t-t^2),1-t),(0,1), color='pink',thickness=10) n2=arrow((0,0,0),(1/sqrt(2),0,1/sqrt(2))) show(plane2+sphere1+circle2a+circle2b+n2,figsize=5)
F2=plot_vector_field3d((x,x+z,z), (x,0,1), (y,-1/sqrt(2),1/sqrt(2)), (z,0,1),plot_points=[5,7,5]) plane2a=implicit_plot3d(x+z==1,(x, -1, 1), (y, -1/sqrt(2),1/sqrt(2)),(z,-1,1),color='white') show(F2+sphere1+plane2a+circle2a+circle2b+n2)

No rotation in above.