Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

All published worksheets from http://sagenb.org

Views: 168727
Image: ubuntu2004
####################################### # # G.2.a - f(x) = x^4 - 10000000*x^2; # ####################################### f(x) = x^4 - 10000000*(x^2) # the function f(x) fig1 = plot(f,(x,-1000,1000),rgbcolor='red') # fig1 ... (red) show(fig1,figsize=[8,4],fontsize=8) # show() with some argument.
############################# # Since the second element of the equation reduces lower values of x well below the x axis, a better global # representation of this function is created by setting the range to about 10,000 or greater, as displayed # below. ############################# f(x) = x^4 - 10000000*(x^2) # the function f(x) fig1 = plot(f,(x,-10000,10000),rgbcolor='green') # fig1 ... (green) show(fig1,figsize=[8,4],fontsize=8) # show() with some argument.
####################################### # # G.2.b - f(x) = (2*x^6 + 50*x^2)/(x^6+3*x^2+1) # ####################################### f(x) = (2*x^6 + 50*x^2)/(x^6+3*x^2+1) # the function f(x) fig1 = plot(f,(x,-10,10),rgbcolor='red') # fig1 ... (red) show(fig1,figsize=[8,4],fontsize=8) # show() with some argument.
############################### # By plotting this with really low values, we can see a tendency emerge. Specifically, the global behavior # tends toward a constant value of 2. # Now, let's take the equation analysis, and we see that the dominant terms for the numerator and denominator # are 2(x^6)/x^6, which results in a constant value of 2. See plot below. ############################### f(x) = (2*x^6 + 50*x^2)/(x^6+3*x^2+1) # the function f(x) fig1 = plot(f,(x,-1000,1000),rgbcolor='green') show(fig1,figsize=[8,4],fontsize=8) # show() with some argument. ############################## # Therefore, the limit in both the negative and positive infinite direction is equal to 2. ##############################
####################################### # #G.2.c f(x)=(x^9+4*e^(0.6*x))/(3*x^12+2*e^(0.6*x)) # ####################################### f(x) = (x^9+4*e^(0.6*x))/(3*x^12+2*e^(0.6*x)) # the function f(x) fig1 = plot(f,(x,-100,1000),rgbcolor='red') # fig1 ... (red) show(fig1,figsize=[8,4],fontsize=8) # show() with some argument.
########################## # Plotting this function, we can see that the global behavior of the function is a constant 2 in the positive # infinite direction. # Now, looking at the equation, we can see that the dominant elements are the exponentional elements because # over a global range, exponential always dominates power elements or functions. # So, (4*e^(0.6*x))/(2*e^(0.6*x)= 2, which results in a positive infinity limit of 2. ##########################
####################################### # #G.2.d f(x)=(3*x^8 - 123*cos(x)-6*x^2)/(e^(0.4*x)) # ####################################### f(x) = (3*x^8 - 123*cos(x)-6*x^2)/(e^(0.4*x)) # the function f(x) fig1 = plot(f,(x,-200,150),xmin=1500,xmax=1500,ymin=200,ymax=1500,rgbcolor='red') # fig1 ... (red) show(fig1,figsize=[8,4],fontsize=8) # show() with some argument.
###################### # Ignoring all but the dominant terms results in the plot below, which is almost identical to the original # formula. Exponential growth dominates power growth so the limit as x approaches infinity of # (3*x^8)/(e^(0.4*x))=0. # f(x) = (3*x^8)/(e^(0.4*x)) # the function f(x) fig1 = plot(f,(x,-2000,15000),xmin=1500,xmax=1500,ymin=200,ymax=1500,rgbcolor='red') # fig1 ... (red) show(fig1,figsize=[8,4],fontsize=8) # show() with some argument. # Some large values appear as x is near 0, but no line is displayed (zero) for large x values.
####################################### # #G.2.e f(x)=(e^(0.8*x))(1 + 5*x^6) # ####################################### f(x) = (e^(0.8*x))*(1 + 5*(x^6)) # the function f(x) fig1 = plot(f,(x,-2,20),rgbcolor='red') # fig1 ... (red) show(fig1,figsize=[8,4],fontsize=8) # show() with some argument. ######################## # Analysis and adjustments to the plot below indicate that there is no positive infinite limit # value for this function. No matter what positive value of x is input for the function, a great # exponential value is output. # Analysis of the original equation and expanding the equation results in (e^(0.8*x))+ (e^(0.8*x))*(5*(x^6)), # which has no limiting value toward positive infinity. ########################
####################################### # #G.2.f f(x)=(3*e^(-x) - e^(-3*x)) / (e^(-3*x) + e^(-x)) # ####################################### # Multiplying the top and bottom by e^(3*x) results in (3*e^(-x))/(e^(-x)) = 3. Therefore, the positive # infinity limiting value is 3. Now, let's look at a plot. ####################################### f(x) = (3*e^(-x) - e^(-3*x)) / (e^(-3*x) + e^(-x)) # the function f(x) fig1 = plot(f,(x,-2,20),rgbcolor='red') # fig1 ... (red) show(fig1,figsize=[8,4],fontsize=8) # show() with some argument.
####################################### # # G.2.g --> See http://springnote.com # G.2.h f(x) = (2*x^4 - 40*x + 1)/(x^2 + x + 12) # ####################################### # 2*x^4 is the dominant growth element in the numerator and x^2 is the dominant element in the # denominator. (2*x^4)/x^2 simplifies to 2*x^2, so this mimmicks this function, so let's see below. ####################################### f(x) = (2*x^4 - 40*x + 1)/(x^2 + x + 12) # the function f(x) g(x) = 2*x^2 fig1 = plot(f,(x,-100,100),rgbcolor='red') # fig1 ... (red) fig2 = plot(g,(x,-100,100),rgbcolor='blue') figs = fig1 + fig2 show(figs,figsize=[8,4],fontsize=8) # show() with some argument.
################################# # # Give a number b so that f[x] is in its global scale behavior for |x| > b. # f[x] seems to be in its global scale behavior at |x|=100, so b = 100. # ################################# # Confirm this with a mentor! #################################