Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

All published worksheets from http://sagenb.org

Views: 168733
Image: ubuntu2004

Section 1.8

#1a. Find the image of u=(1,-3) under the transformation A.
u = vector(QQ,[1,-3]) A = matrix(QQ,[[2,0],[0,2]]) A*u.column()
\newcommand{\Bold}[1]{\mathbf{#1}}\left(26\begin{array}{r} 2 \\ -6 \end{array}\right)
# Here is one way to plot a vector u = arrow((0,0),(1,-3), color='red') Au = arrow((0,0),(2,-6), color='blue') title = text("Vector u (red), and its image Au (blue).", (1.5,-1)) plot(u+Au+title)
#5.
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\left(157375\begin{array}{rrr} 1 & -5 & -7 \\ -3 & 7 & 5 \end{array}\right), \left(-2,\,-2\right)\right)
Augment b to get [A b]
Ab = A.augment(b) Ab
\newcommand{\Bold}[1]{\mathbf{#1}}\left(15723752\begin{array}{rrrr} 1 & -5 & -7 & -2 \\ -3 & 7 & 5 & -2 \end{array}\right)
Ab.rref()
\newcommand{\Bold}[1]{\mathbf{#1}}\left(10330121\begin{array}{rrrr} 1 & 0 & 3 & 3 \\ 0 & 1 & 2 & 1 \end{array}\right)
Thus, x_1 = 3-3x_3, and x_2 = 1-2x_3. The solution is not unique since x_3 is free! The general solution is the following:
\newcommand{\Bold}[1]{\mathbf{#1}}\left(-3 \, x_{3} + 3,\,-x_{3} + 1,\,x_{3}\right)
An easy-to-find particular solution results from setting x_3 = 0:
\newcommand{\Bold}[1]{\mathbf{#1}}\left(3,\,1,\,0\right)
# 9 (Alternate solution from the future (see Section 4.2). The kernel is the set {x} such that Ax=0. For now, this problem should be solved using row reduction algorithms. This is designed to give you a sneak peak at the general notions in this problem.)
A = matrix(QQ,[[1,-3,5,-5],[0,1,-3,5],[2,-4,4,-4]]) A
\newcommand{\Bold}[1]{\mathbf{#1}}\left(135501352444\begin{array}{rrrr} 1 & -3 & 5 & -5 \\ 0 & 1 & -3 & 5 \\ 2 & -4 & 4 & -4 \end{array}\right)
A.right_kernel()
\newcommand{\Bold}[1]{\mathbf{#1}}\mathrm{RowSpan}_{\Bold{Q}}\left(134140\begin{array}{rrrr} 1 & \frac{3}{4} & \frac{1}{4} & 0 \end{array}\right)
The span of the vector (1,3/4,1/4,0) forms the kernel, or "null space", of the transformation A.